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Chapter 1

Introduction

This mini-course is aimed at young researchers and graduate students who
want to learn basic tools and techniques of real singularity theory.

It starts with well-known notions and results of differential topology:
Brouwer degree, index of a vector-field, Poincaré-Hopf theorem, Gauss-
Bonnet, theorem. Although theses notions may be very familiar to any con-
firmed researcher in singularity theory, we believe it is worth recalling them
here.

Then in the next chapter, we apply these techniques of differential topol-
ogy to some real analytic or semi-analytic sets and we get several nice for-
mulas for topological invariants of these sets.

We end with a chapter about semi-algebraic sets. After a brief introduc-
tion on semi-algebraic sets and maps, we give several semi-algebraic singular
versions of the Poincaré-Hopf theorem and the Gauss-Bonnet theorem.

The author would like to thank the organizing committee of this School
on Singularity Theory, and especially Raimundo Araiijo dos Santos, for
inviting him to give this mini-course.



Chapter 2

Tools of differential topology

In this chapter, we give the main tools and results in differential topology
that we will need and apply in the study of real singularities. Our main
references are [GP], [Hi], [Mil] and [Mi2].

2.1 The Brouwer degree

Let M and N be two oriented n-dimensional manifolds (without boundary)
and let f : M — N be a smooth (i.e. C°) map. We assume that M is
compact and N is connected. Let = be a regular point of f. This means
that Df(z) : T,M — Ty N is a linear isomorphism between oriented
vector spaces. We define the “sign” of D f(x) to be +1 (resp. 1) if Df(x)
preserves (resp. reverses) the orientation.

Definition 2.1.1 For any regular velue y € N, we define:

deg(f,y)= » sign Df(z).

ref~1(y)

Remark 2.1.2 Since y is a regular velue of f, f~1(y) consists of regular
points. Since M is compact, f~1(y) is a finite number of points since it is
a 0-dimensional manifold.

Theorem 2.1.3 The integer deg(f,y) does not depend on the choice of the
regular value y.

Definition 2.1.4 [t is called the (Brouwer) degree of f, denoted by deg f.

Theorem 2.1.5 If f is smoothly homotopic to g then deg f =deg g.
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For the proof of these two theorems, the reader is referred to Milnor’s book
{Mil].

Examples: 1) The map on the left has degree 0 and the map on the right
has degree 1.

+
+
2) The map pictured below has degree 2.
Fy+
3) Let r; : S™ — 5™ be defined by:
'r‘i(:lll, e ;fEn—}-l) = (:‘61, ey —Lgy - :$n+1)~

The degree of r; is —1.

4) The map 5! ¢ C — 5t €, 2z 2™, m € Z* has degree m. Actually
each point has exactly m preimages and the map is regular and preserves
orientation if mm > 0 and reverses it if m < 0.

Proposition 2.1.6 If M, N and L are three smooth compact oriented man-
ifolds of the same dimension end f : M - N and g : N — L are two smooth
maps the deg(go f) = deg g x deg f.

Proof. It is easy from the definition. O

Example: The antipodal map ¢ : §™ — S§*, z — —z has degree (—1)"*!
because ¢ = 71 073 © -+ 0 rpyy. Hence if n is even, o is not smoothly
homotopic to the identity.

Theorem 2.1.7 If M = 8W and f : M — N extends to ' : W — N then

deg f = 0. y
<P 5 O



Application: Assume that M is a smooth compact connected hypersurface
in R™. By the Jordan-Brouwer Separation Theorem, it bounds a connected
open set D C R, i.e. M = dD. This induces a natural orientation on M.
Let ¥ : D — R™ be a map that does not vanish on 8D = M. We assume
that inside D, F has a. finite number of zeroes p1, . .., pr, that are all regular
points of F'. We can define F = l_% : M — 8771, Then we have:

deg F = _sign det[DF(p;)].

Let us explain this equality. We remove a small open ball B{p;,¢;)
around each p;. Let W = D\ U™ B(p;,¢;), it is a manifold with boundary:

oW = M| JU,S(ps,e4)-

The submanifold &W is oriented by the canonical orientation of the bound-

ary. Let us consider Faw : OW — 5"~ 21— % Then Faw extends to W,

so deg Faw = 0. But, on the other hand, we have:

e
deg Faw = deg F — Z deg F;,

i=1
where F; = % . 8(ps,€:) — S™"1. A minus sign appears here because the
orientation of S(p;, ;) as a component of the boundary of W is the opposite
of the orientation of S(p;,;) as the boundary of B(p;, ;).

But, since p; is a regular point of F', the degree of F; is equal to the sign

of det[DF(p;}], because l_gl : 8(p;, ;) — S™ 1 is homotopic to the map:

. DF@m)o-p)
IDF(p:)(p — p)ll’
and therefore has the same degree as the map:

DF(p)(h)
|DF(p:) ()

S(ps, i) — S p

5(0,e:) — S™1 h o



This last map has degree equal to sign det [DF(p;)], because the map h —
DF(p;)(h) is homotopic to £Idgn, depending on the sign of det[DF(p;)]
since GL(n,R) has two connected components.

2.2 Vector fields and Poincaré-Hopf theorem

Definition 2.2.1 Let M be a smooth manifold. A vector field V on M isa
smooth mapping V : M — TM such that for allz € M, pr(V{(2)) € T, M,
where pr: TM — M is the natural projection.

Remark 2.2.2 If M C R" then a vector field is just a smooth mapping
V:M — R™ such that for allx € M, V(z) € T, M.

Definition 2.2.3 Let p be an isolated zero of a vector field V on a manifold
M of dimension n. In local coordinates, we can view V' as a mapping from a
small open set 7 C R™ to a smaoll open set U' CR™ where 0 € U and 0 & U’
and such that 0 is the only zero of V in U. We define the Poincaré-Hopf
index of V at p by:

|4
Ind(Vr p) = degree of |—‘;—| : Sg'_l — Sn—I’

where ST is a small sphere included in U.

Examples in R%:

1. If V(z,y) = (y, —z) (circulation) then Ind(V,0) = +1.

P

4 70"?

N
F



 If Vi(z,y) = (—z,—y) (sink) then Ind(V,0) = +1.

‘sf:[

— ¥ -
ki B

 If V(x,y) = (z,y) (source) then Ind(V,0) = +1.

. If V(z,y) = (—x,y) (saddle) then Ind(V,0) = —1.

poe
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-

i
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-
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A
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CIf Ve, y) = (22,2 +y) then Ind(V,0) = 0.

s
—
iy

4
-»
-y

I V() = (22— 2zy) (2 — z? in complex coordinates) then
Ind(V,0) = 2.

f
f
I ioa
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Remark 2.2.4 We have to check that this definition does not depend on
the local coordinates (see (Mil] and [GP] for example).

Theorem 2.2.5 (Poincaré-Hopf theorem) Let M be a smooth compact man-
ifold. Let V be a smooth vector field on M, with o finite number of zeroes
Pl,---;Pe- Then we have:

k
x(M) = 3 Tnd (Vo).
i=]
Proof. See [Mil], [GP] or [Hi]. a

2.3 Morse functions

Definition 2.3.1 Let M be a smooth manifold of dimension n, let p € M

and f : M — R be a smooth function. Let (zy,...,2n} be local coordinates
around p in M. We say that p is a non-degenerale critical point of f if p is
a critical point of f (i.e. %(p) =...= %@) =0} and the matriz:
e
dz;0x; 1<ij<n

i§ non-singular.

Remark 2.3.2 Tt can be checked that this definition does not depend on the
choice of the local coordinate system (see [GP/).

Proposition 2.3.3 (Morse lemma) Let p € M, dim M = n, be a non-
degenerate critical point of a smooth function f : M — R. There ezists a
local coordinate system (uq,. .., un}) around p such that:

T R R NSRS
Proof. See [Mi2). a
Definition 2.3.4 The integer X is called the index of f of p.

Corollary 2.3.5 Non-degenerate critical points are isolated (in the set of
critical points).

Definition 2.3.6 Let M be a smooth manifold. A function f : M — R is
a Morse function if it admits only non-degenerate critical points.
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Theorem 2.3.7 (Openness and density} For any manifold M, Morse func-
tions form a dense open set in CX(M,R) (Whitney strong topology).

Proof. Tt is a consequence of Thom's transversality theorem (See [Hi], [GG]
or [AGV]). O

For our applications, we will be mainly interested in fibres of analytic or
polynomial mappings, so from now on, we shall assume that M C RY and
that dim M = n. Let f : M — R be a smooth function. This defines a
vector field Vs f (the gradient vector field of f on M) by:

vp € M,Yv € T,M,Df(p){v) = (Vm f(p),v).

Hence p is a critical point of f if and only if Varf(p) = 0. If p is a Morse
critical point of f of index ), then there is a local coordinate system such
that:

f=1@) - g+,
and so:
Vufl =(-2up, ..., —2ux2uygq, - - , 2up).

Hence the Poincaré-Hopf index Ind{V s f, p) is equal to (=1)* because, as
already explained above, the mapping ]—%ﬁ : S(p,e) — 571 has degree
equal to sign det{D{V s f)(p)l. We can state:

Theorem 2.3.8 Let M < RY be a smooth compact manifold and let f :

M — R be o Morse function with critical points p1, ..., pk. Then, we have:
k
X(M) = 3 (=1,
i=1

where A(p;) is the Morse indez of p;.

We will also consider the case of manifolds with boundary. Let (M, M) C
RY be a manifold with boundary. Let g € M, then T,0M is a hyperplane
in T,M and T,M = T,dM UWT,M* UT,M~ where TyM™ consists of out-
wards pointing vectors (outward vectors for short) and T,M~ consists of
inwards pointing vectors.

CTaw !




Definition 2.3.9 Let ¢ € &M and let f : (M,0M) — R be a smooth
function. We say that q is a correct critical point of f if ¢ is a critical point
of fionr : OM — R and D f(q)ip,ar is not identically zero.

Definition 2.3.10 We say that f: (M,0M) — R is a correct Morse func-
tion if f admits only Morse critical points on M\ OM and flar admits only
Morse correct eritical points.

Theorem 2.3.11 Let (M,0M) C RY be a compact manifold with boundary
and let f: M — R be a correct Morse function. Denote by p1,...,px the
critical points of fianaom and by qu, ..., q those of flap- Then we have:

k

X(M) = (-1} 4 3 (—1)Hles),

i=1 7| Vs flgg) inward

where A(p;) is the Morse index of p; and p(q;) is the Morse indez of g;.

The following result is due to Haefliger [Ha] and Samelson [Sa.
Application: Let M™ < R™*! be a compact hypersurface canonically ori-
ented. Then M is the boundary of a compact manifold W of dimension
n+1. Let g : M — S™ be the outwards pointing unit normal vector field.
We have:

deg g = x{W).

Proof. By Sard’s theorem, we can find ¢ € 8" such that a and —a are
regular value of g. Let us write {q1,...,q} = g7!(%a). Let a*: R SR
be the function defined by a*(z) = {e, =) and let us consider afy, : M — R,
z — (a, ) its restriction to M. The critical points of ajj, are exactly the g;'s
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and furthermore, by a determinant computation, there are non-degenerate.
Hence o, is a Morse function. It is straightforward to see that ai“w is a
correct Morse function. By the previous theorem, we know that:

x(W) = oo (muHe,

7| Var(g;) inward

where p(g;) is the Morse index of ai“M at g;. But Vo* = a so Va*(q) is
inward if and only if g{¢} = —a. Therefore,

W)= Y (1.

i | glgs)=—a

It remains to relate (—1)#(%) to the local degree of ¢ at g;. We use the
following lemma.

Lemma 2.3.12 We have: deg(g, ;) = (—1)"sign(g(qj),a)n(_l)#(qj)_

Proof. See [Du6], Lemma 2.3. g
If g(g;) = —a then

deg(g, ) = (~1)" (sign(=[af"))" (-1 = (~1p4®.

Finally, we find that:

XWy= > deg(g,q5) =deg g
il glgj)=—e
|
In the following chapters of this mini-course, we will use relative versions
of the two previous theorems on Morse theory.

Theorem 2.3.13 Let M C RY be a smooth compact manifold and let f
M — R be a Morse function with critical points p1,...,pr. Forany o € R,
we have:

XMMN{f2a))= Y (-1,

i| flpd>a

where A(p;) is the Morse index of p;.

Theorem 2.3.11 has a similar relative version.

11



2.4 The Gauss-Bonnet theorem

Let M C R**! be a compact hypersurface, canonically oriented as the
boundary of a compact manifold with boundary W. Let g : M — S™ be the
Gauss map. Its Jacobian J,(z) = k(z) is called the curvature of M at z. It
is the determinant of the differential Dg(z) : T, M — Ty(5)S™ = T M.

A

Theoremn 2.4.1 We have:
/ k{z)dz = vol{(S™)x(W).
M

Proof. We denote by dv the volume form on S™. By integral calculus on
manifolds, we can write:

./M k(z)dz = /M Jg(z)dz = /M g™ (dv) = deg Q/Sn dv = deg g x vol(S™).

But we know that deg g = x(W). ]
The following corollary is due to Hopf {Hoj.

Corollary 2.4.2 If M is even-dimensional, we have:
k(z)dz = Svol(S™)x(M).
M 2

Proof. Use the equality x{M) = 2x(W). O

12



Chapter 3

The Eisenbud-Levine
formula, the Khimshiashvili
formula and applications

3.1 The Eisenbud-Levine formula

As seen in the first chapter, the Poincaré-Hopf index of a vector field plays
an important role in the topology of manifolds. Here we present an algebraic
formula for this index.

Let f = (fi,..., fn) - (R*0) — (R",0) be a C°° map-germ (this is
exactly the local expression of a vector field on a smooth manifold). We
assume that: Coo(R™. 0
o) = B

(fl: cee 7fn)
is a finite dimensional vector space over R. Here C®°(R",0) is the algebra
of germs at 0 € R™ of C* real valued functions and (fi1,..., fn) is the ideal
generated by the components f1,..., fn of f. We write dimpQ(f) < +oo.
We denote by Jy the jacobian of the map-germ f. Namely, we have:

— a(.flnafn)
3(&31,...,:{:”)'

Theorem 3.1.1 (The Fisenbud-Levine formula) Let f : (R*,0) — (R",0)
be a C° map-germ such that dimp@Q(f) < +oo. Then we have:

1. 0 is isolated in f~1(0),
8. J; £ 0 inQf),

Jy
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3. Vg € Q(f), gJy = 9(0)Jf in Q(f),

4. let ¢ - Q(f) = R be a linear form such that ¢{J;) > 0 and let @ :
Q) x Q(f) — R be the bilinear symmetric form defined by ®(g, h) =
w(gh) then & is non-degenerate and signature ® = Ind(f,0).

Proof. See [EL], [AGV] or [BCRS]. For a first approach, see [Ei]. O
Example: Let f be the map-germ defined by:
fo R%0) = (R?, 0)
(:L‘, y) = (1:2 - yZ, 2$y)-
We have: Q(f) = (—f;_f%. We see that dimp@(f) = 4 and that 1, T, §

and 2 - y2 form a basis of @(f). It is clear that 0 is isclated in f ~1{(0). Let
us compute Jy:

2x -2
Je(z,y) =‘ % 2:ny ‘= 4z’ + 7).

Let ¢ : @Q{f) — R be the linear form given by:

— 1

(1) = o(z) = (7)) = 0 and p(z* +¢*) = 7.

Then ¢(J;) = 1. Let & be the linear symmetric form defined by ®(P, Q)=
@(PQ). Let us compute its matrix in the basis (1, z,9, 2% + y*). We have:

$(1,1) = ¢(I) =0,8(1,z) = 8(z,1) = 0,9(1,7) = 0(g, =0,

H

|l ol =

2(7.5) = o) = o5 + 9 =
2(z.9) = #(77) = $(0) = 0 = (7, 2),

—= 1

®(1,2% +y°) = 7, 2(Z, 2% +3?) = o(z* + 2y?) = p(0) =0,

}

B(5,2° + y2) =0, B(z? + 32,22 + 92) = o((z? + ¥ (22 + ¢7)) = 0,

So this matrix is:

= O O O
o OO
QO O
[ R B YN

14



The eigenvalues are % with multiplicity 2, % with multplicity 1 and —;11- with
multiplicity 1. So the signature of @ is 3 — 1 = 2 = Ind(f,0).

The Eisenbud-Levine formula gives an algebraic formula for the index of
a vector field, hence an algebraic and “effective” way to compute a topologi-
cal data. In the sequel, using technics introduced in the first chapter, we will
present several formulas relating topological invariants to indices of vector
fields. Thanks to the Eisenbud-Levine formula, these topological invariants
become algebraically computable.

3.2 The Khimshiashvili formula

From now on, we will restrict ourselves to the analytic or polynomial case.

Let f : (R™,0) — (R, 0) be an analytic-map germ with an isolated critical
point at 0. The Khimshiashvili formula (see [Kh]) relates the Poincaré-Hopf
index of the gradient vector field ¥V f of f to the topology of a small regular
level of f.

Theorem 3.2.1 We have:
x(f~H8) N BY) = 1 —sign(—4)"Ind(V £,0), (1)
where & is a reqular value of f and 0 < |8] € e K 1, and:
X({f 2 6} N B2) — x({f < 8} 1 BY) = sign(~6)" nd(V£,0). (2

Proof. Let U be a small open set of R” such that 0 € U, and f is defined
in U. We pertub f in a Morse function f:U —R. Let py,...,px be the
critical points of f . with respective indices A1, ..., Ag. Let & > 0, by Morse
theory we have:

k
x(771 (16,6 1 BE) = {1 7H=0) N BE) = (D™,

Actually we can choose f sufficiently close to f so that the p;’s lie in

FH=4, &), Now, f=1([—6,6])NBE retracts to the central fibre f~1(0)NB?

and f~1(0) N B, is the cone over f~1(0) M S7™1) (see [Mi3]) so:

x(FH (=6 NBY) =1
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Moreover, we have:
k k _
S (=M =) sign det[D(V)(pi)]
i=1 i=1

The sum on the right hand-side is the degree of the map %% : S?‘l i

which is equal, by homotopy, to the degree of ]—g,—)% . §r—1 — 571 By
definition, this last degree is Ind(V £, 0). This gives the result for a negative
regular value. For a positive regular value, we apply the result to — f and
use the relation Ind(—V£,0) = (—=1)"Ind(Vf,0). This proves formula (1).
Formula (2) is proved with similar arguments. D

We will call f~1(8)NB? the (positive or negative) real Milnor fibre. The
following formulas are due to Arnol'd {Ar] and Wall [Wa.

Corollary 3.2.2 With the same hypothesis on f, we have:
X({f <0} N8 = 1 - Tnd(V£,0),
x({f = 03N 827 =1+ (-1)"Ind(VF,0).
If n is even, we have:
x({f=0ynst 1) =2-2Tnd(VS,0).

Proof. By a deformation argument due to Milnor [Mi3], f{-6)N B¢, 4 >0,
is homeomorphic to {f < —&} N .S?~!, which is homeomorphic to {f <
0} N SP1if § is very small.




3.3 The Fukui formula

The above real Milnor fibre can be also written f;1(0)nB2, 0 < |t| € ¢ < 1,
where f,(z) = f(z) — t. In this section, we will present a method for the
computation of the Euler characteristic of f;(0) M B2, 0 < || < ¢ < 1,
where f; is a one-parameter deformation of f : (R™,0) — (R,0). It is
interesting to study such deformations because the topology of the fibre is
somehow richer than the one of the real Milnor fibre and contains more
information about the singularity. The setting is described below.

Let £ : (R",0) — (R,0) be an analytic function-germ with an iso-
lated critical point at 0. Let F : (R*1,0) — (R,0), (t,z) — F(t,z)
be a one-parameter deformation of f, i.e. Fy(z) = F(0,z) = f(z}. Let
H : (R™1,0) = (R™+,0) be defined by H(t,z) = (F25,..., 45). We
assume that H has an isolated critical zero at 0, so that Ind(H,0) is well-
defined.

Lemma 3.3.1 The function F has an isolated critical point af the origin.

Proof. By the Curve Selection Lemma [Mi3], VF~1(0) is included in F~1(0).
Hence VF1(0) ¢ H~1(0). m]

Lemma 3.3.2 For t #£ 0 small, the fibre f71(0) = {z € R™ | F(t,z) = 0}
is smooth in a neighborhood of the origin.

Proof. The point z € R™ is a critical point of f;” L0} if and only if ¥i €
{1,...,n}, %(:ﬂ) = 0. This implies that g—f;(t,:z:) = 0 and that H{t,z) =0.
O
The following theorem was proved by Fukui [Fuk].
Theorem 3.3.3 For 0 < |§] € ¢ < 1, we have:
K(F1E) Nt > 0} 0 BIFY) - x(F7(5) 0 {6 < 0} N ) =
—sign{—8)"*1Ind(H, 0).

Proof. We work in a small open set U of R™*! that contains 0. Let 7 :
R* — R, (£, z) — t be the projection on the first coordinate. After a small
perturbation of I, we can assume that 7z 1580 F-1(8)NBr — R admits
only Morse critical points pi,...,pr with respective indices AL, ..., AL By
Morse theory, we have:

X(FH @) N {t 2 0} n B+ - x(FH(8)n {t =0} n BI*H) =

17



> (-uM,

J | w(ps)=0

X(F71(5) 01 {£ < 0} N BIH) - x(F1(@) N (=0} N B YY) =
(~=n™ > (=M.

J | m{py)<0

Here we have to notice that F~1(8) N BrH! is a manifold with boundary.
But, by the Curve Selection Lemma, we can prove that the critical points of
| p-1(5)nse i {t > 0} point outwards, hence they do not appear in the above

equality. Now it is easy to see that the critical points of T p-1(snpitt are
aFr

exactly the zeros of Hy = (F — 4, g—i, cee E)‘ A determinant computation
shows that the p;’s are non-degenerate zeros of Hs and that:

(—1)% = —sign 7(p;)" T x sign(—6)"™! x sign det[DH;(p;))-
Thus we obtain:

X(FH@) B n{t>0}) —x(F (O NBH n{x <0}) =

k
- Zsign w(p;)" T % (=1)N =
i=1

k
—sign(—8)""1 Y " sign det[DHs(p;)] =
G=1

el _ s+l s . on nl —
sign(—4) (degree of i+ 57 — S ) =
—sign(—8)"+Ind(H, 0).

The last equality is explained by the fact that the maps % and % are
homotopic if ¢ is small enough. ]

Corollary 3.3.4 If n is even, then we have:
x(f (0)n BY) = 1 Ind(V£,0),
x({fi = 0} By — x({fe <0} N BY) = Ind(VF,0) + sign(t) Ind(H, D).
Ifn is odd, then we have:
x(f71(0) N BY) = 1 - Ind(VF,0) — sign(t) Ind(H, 0),
x({f: = 0} N BY) — x({f: £ 0} N BY) =Ind(Vf,0).

18



Proof. By a deformation argument, we have for § > O
FLY&N{t > 0ynBI = {F > 0}n{t 2 0}NS? =~ {F > 0}n{t = §}NBI T,

where ~ means homeomeorphic to. F ts)

Similarly, we can write:
Flen{t<0}nB* ~ {F>0}n{t=-§}n B,
Fl(=8n{t> 0 nBM! ~ {F <0}n{t=46}n B,

Fl=on{t<0inB* 1~ {F<0}n{t=—-5tnBr".

By Khimshiashvili’s formula, we get:

x(F~UO) n B =14 (-1)"Ind(VF,0),

x(F7{=8)n B} = 1 - Ind(VF,0),
x(FY &) N B n{t =0}) =1+ (-1)""'Ind(V¥,0),
X(F7H (=) n B n{t=0}) =1 -Ind(Vf,0).
By the Mayer-Vietoris sequence,; we have:
X(FHE) N Bt +x(FTHe) n B n{t=0}) =
X(FHO) Nt = 03n BE )+ x(FH@)n{t <0ynBrt) =
2+ (—1)"Ind(VF,0) + (=1)*"'Ind(V £, 0),

and:
X(FY=8) nBI) +x(F =) nB n{t=0}) =

W (FH(=8) N {t > 0} N B2 4 x (FL(=s) n {t <0} n BIH) =
2 —Ind(VE,0) — Ind(V{,0).
Applying the previous theorem, we get:

X({F 20} n{t =6}y nBI*) = x(F6)n{t 2 0} BI*) =
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4 L 2) (Ind(V F,0) — Ind(V £, 0) + Ind(H, 0)).
Similarly, we have:
x({F20yn{t=-8}nBr*") =
1+ g (Ind(VF, 0) — Ind(V ,0) — Ind(H, 0)),

x({F <o0}n{t=8nBrt!) =
1- %(Ind(VF, 0) + Ind(V £, 0) + Ind(H, 0)),

x{({F < 0} N{t=-46}n B”“)
1- —(Ind(VF 0) +Ind(Vf,0) -- Ind(H, 0)).
We conclude with:
X(BE) =1=x({f 2 0} n B+ x({fs £ 0}n BY) — x({f: =0} N BY).
O

Example: Let f(z,y) = 2° — y® and let F(t,z,y) = 2% — -ty Ift>0
then:

(71 (0) N BY) = 1 and x({f 2 0} N BZ) - x({/: <0} N B}) =0.
If t < 0 then:
~1(0) N BY) = 1and x({f, > 0} 0 BY) — x({f: <0} N B2) = —2.

AL e

Let us check that the above formulas hold in this example. We have
VF(z,y) = (2x, —3y%), hence Ind(Vf,0) = 0. Let us compute Ind(VF,0}.
We have VF(t,z,y) = (-, 2z, —3y? — t). The matrix of the differential of

VE is:
0 0 -1
D(VE)(t,z,y) = 0 2 0 .

-1 0 —by

20



It is easy to see that VF~1(0,0,¢) = (—£,0,0) and that
det[D(VF){~£,0,0)] <0.

This implies that Ind(VF,0) = —1. Let us compute now Ind{H,0). We
have H(t, z,y) = (22 — y* — ty, 2z, —3y* —t) and

—y 2x 3y’ —t¢
DH(t,z,y) = 0o 2 0 .

-1 0 —by

Let us search the preimages of (0,0,¢) where ¢ > 0. If (¢,z,y) is such a
preimage, then z = 0, ° + ty = y(3* +t) = 0 and 3y* +t = —e. If
y% +t = 0 then 3y? — y? = 2y? = —¢, which is impossible. Therefore y =0
and t = —=. It is easy to see that DH({—¢,0,0) = 2¢ > 0. We conclude that
Ind(H,0) = +1. Applying Fukui's formula, we recover the above values for

x(f710) N B2) and x({f: 2 0} N BY) — x({f: <0} N BY).

3.4 Applications to map-germs with an isolated
critical point
Let ¢ = (f1,.--, fx) : (R*,0) — (R*,0), 2 < k < n, be a real analytic

map-germ with an isolated critical point at the origin. This means that 0 is
isolated in

S(¢) = {z € B" | rank(VA (=), .., V() < k}.

This implies that for any ! € {1,..., k} and for any {-tuple (%1, . . ., i) of pair-

wise distinct elements of {1,...,k}, the mapping (fi,,..., fy;) : (R*,0) —
(R!,0) has an isolated critical point at the origin as well, for otherwise 0
would not be isolated in S(1). Let ¢ = (f1,..., fe_1) : (R, 0) - (RF1,0).
The following result was proved by Araijo dos Santos, Dreibelbis and the
author [ADD].

Proposition 3.4.1 For 0 < || < ¢ <« 1, the following holds:

(i) Ifn is even, we have:
x(¢7HO) N N (0)NBL) = 1 - Ind(V f1,0);
(ii) Ifn is odd, we have Ind(V f1,0) = 0 and:
x(¢~' ()N fim (O)NBL) = 1.
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Proof. Applying Morse theory for manifolds with boundary to fi4-1(5)nBn,
we have:

x(@7H(6) N {f 20}N BY) —x{¢7 1O N fT Q)N BY) =0

because fi4-1(5) has no critical points for L(y) = {0} and because the
gradient vector field V fr4-1(5ynpz points outwards at the critical points of
frjg=1(5)nsp-1 lying in {fi > 0}. Similarly, we have:

x{671 ) N {fi <O}NBY) —x(¢7* BN HTHO)NBL) = 0.

Summing these two equalities and using the Mayer-Vietoris sequence, we
obtain that:

x(¢7H(&) N BR) = x (¢~ (6) N A~ (0) N BL).
Applying this procedure & — 1 times, we obtain that:
x(@71(0) N f7H0) N BY) = x(A7 (aa) N BT),

where @ is a small regular value of f.
By Khimshiashvili’s formula, we know that:

x{f17 (1) N BE) = 1 — sign(—ay)"Ind(V f1,0).
Hence, if n is even, we find that:
x(¢71(8) N £ 0) N BY) = 1 - Ind(V f1,0).

If n is odd, just changing a; by —ay, we get that Ind(V f1,0) = 0 and
X(qb_l(é) M fk_l(O) M B?) =1. O

Corollary 3.4.2 Let v be @ small reqular value of ¢. If n is even, we have:
x( )N BZ2) =1-Ind(Vf1,0) = --- =1 - Ind(Vf,0),

and Ind{V£1,0) = --- = Ind(Vf,,0). If n is odd, we have Ind(V f1,0) =
oo =Ind(Vfx,0) and x(¢ " (v)NB) =1.
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3.5 Real versions of the Lé-Greuel formula

In the previous sections, we studied map-germs from (R™, 0) to (R*,0) when
k € {1,n} or when 2 < k < n and the map-germ has an isolated critical
point at the origin. Here we will investigate the general case.

Let 1 < k < n and let f = (fi,...,fx) : (R%0) — (R¥,0) be an
analytic map-germ such that 0 is an isolated singular point of f —1(0). This
means that 0 is isolated in {z € R" | rank[Df{z)] < k} N f~1(0). Let
g : (R*,0) — (R,0) be an analytic function-germ. Let I be the ideal in
Ogn p, the algebra of analytic function-germs at the origin, generated by

1, ..., fr and the minors O fid)  and let Ap = 920 We will denote
& L3 eenTig ) T

by Cf the real Milnor fibre f~1(8)N BZ, 0 < [§| € e < 1.
The following theorem appeared in [Dus5).

Theorem 3.5.1 If dimpAg < +oo then we have:
x(Csn{gza})—x(Cin{g<a}) =
x(C%) — x(C5 N {g = a}) = dimpAg mod 2,
where (8, a) is a regular value of (f,g) such that 0 < 8] < e < 1.

Proof. We pertub g in g such that gce is Morse. By Morse theory, we have:

x(Cin{g=za}) —x(C5n{g=a})=
# {critical points of §|oc such that g > a} mod 2,

x(Cin{g <a}) —x(C5n{g=a}) =
# {critical points of gjo: such that § < a} mod 2.

Q‘C‘o)

xq

Hence we find that:

{eléw hy) g

¥laiy, . Mgyl
x(CEN{g > a}) — x(C§ N {g < a}) = #{critical points of §c<} mod 2.

By intersection theory, the right-hand side of this last equality is equal to
dimp Ap mod 2. O
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Remark 3.5.2 In the complez case, the Lé-Greuel formule ({Grf, [Lej)
states thaot.
u(f) + p(f, 9) = dimeAc,

where u(f) and p(f,g) are the Milnor numbers of f and (f,9) and Ac is
defined as in the real case.

The natural question that arises after this theorem is to ask il it i possible
to get rid of the mod2 in the equality, namely to express:

x(Cin{g > a}) - x(C;N{g < a}),

| $(C5) % X(CE N {g = a}),

in terms of the signature of a bilinear symmetric form defined on Ag. In
general, as far as we know, this is still unknown and the question remains
open. However, in some cases, the problem is solved. The strategy used is
to find n— k analytic function-germs such that I = (f, ..., fi;m1, .- -, My k)
and to relate:

x(C§ N {g > a}) = x(C;N{g < a}),

or:
x(C35) £ x(C5 N {g = e}),
to the Poincaré-Hopf index at 0 of the following map H:
H . (R%,0) — (R, 0)
z = (fl(w)a"'afk(m);ml(m)r'--7mn—k($))-

Let us list the cases for which this strategy works. If k = n —1 then FHo)
is a curve (or a point). Let H = (f1,..., fa—1, %—ﬁ;—‘)ﬂ) Then we have:

# {branches of f~1(0} | g > 0} — # {branches of 70y | g< 0} =
2(—1)""Ind({H, 0).

Here s branch is a connected components of f71(0) \ {0}. This equality
was proved in some cases by Aoki, Fukuda, Nishimura and Sun {[AFN1)},
[AFN2], [AFS]) and in full generality by Szafraniec [Sz2].

If & = 1 then f is a function-germ with an isolated critical point at the
origin. As already explained above, when g = 1, Fukui [Fuk] proved that:

(CE M (o1 = 0}) — x(C5 N {1 < 0}) = —sign(~8)"Ind(H,0),
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where H = (f, '3%:%2 e %). Note that (§,0) is always a regular value of
(.f': j"l)‘

In [Du2), when n = 2,4 or 8, we were able to construct explicitly a map
H = (f,ma,...,my) such that:

X(Ci N {g = a}) - x(C5 N {g < a}) = ~Tnd(H,0).

The main idea that we used there is that the fibre f~1(8) is parallelizable
(like the spheres S' < R?, $* C R* and ST < R®). This last formula was
extended by Fukui and Khovanskii in [FK]. They assume that g satisfies the
following Condition {P): there exist C* vector fields vg, . .., v, defined in a
neighborhood U of the origin such that:

1. va(z), ..., vn(x) span Tpg 1 (g(z)) whenever Vg(z) # 0,
2. det[Vg(x),va(x),...,vnlz)] > 0.
Let H be defined by:

H : (R%0) — (R",0)
£ e (f@) o fla) - onf(@).

If 0 is isolated in H~1(0), then we have:
x(C§ N {g > 0}) — x(C§ N {g < 0}} = —sign(—4)"Ind(H, 0),

if (6,0) is a regular value of (f,g). If n is even, we can replace (6,0) with
a regular value {6, ) where 0 < jo| < [§] < . Furthermore, they gave
situations where Condition (P) is satisfied:

1. n=2,4 or 8 {seec [Du2]),
2. when aa—g >0,
i
3. if Vg~ (0)n BZ C {0} then Condition (P) is satisfied if:

(a) n=24or 8,
(b) or n is even and n ¢ {2,4,8} and Ind(Vg,0) is even,
(¢) or n is odd and Ind(Vg,0) = 0.

In [Dul0], we continued this work and made some improvements.
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3.6 Global versions

In this section, we briefly report on global versions of the previous results.
Let F = (Fy,...,F}) : R® — RF be a polynomial map and let W =
-1(0). Let Gip,...,G; : R" — R be polynomials. The problem is to
compute the Euler-Poincaré characteristic of W N{G1710, ..., G;7,0} where
7, € {<,<, >, >} for j € {1,...,1}, i.e. to express it as a mapping degree
or a signature.

If the dimension of the algebra A = %”i’—ff‘% is finite, then W consists of
a finite number of points. It is possible to express #W N{G17,0,...,G/%0}
in terms of signatures of bilinear symmetric forms defined on A (see [PRS]
and [BW]).

In the case W is a compact algebraic set, Szafraniec ([Szl, Sz4]) and
Bruce [Br| discovered a signature formula for x(W). In [Du7], we extended
it to semi-algebraic sets of the form W N {x1710,..., 2470} where W is
compact, k € {1,...,k}and ?; € {<,=2}.

The Bruce-Szafraniec method does not work if W is not compact. In
[Sz3, $z5], Szafraniec proved several degree or mgnature formulas when F =
(Fl,-..,F) withl <k <n—-1and W = F~1(0) is a smooth (n — k)-
dimensional manifold (not necessarily compact). In [Dul, Dud] we gave
formulas for some semi-algebraic sets of the form W N {G7?0}, where ? € {<
, 2}, and of the form Wn{G17,0, G3720}, where 71 and 73 lie in {<,>}. In
[Du3, Du8], we gave generalizations in some cases where W admits isolated
singularities. However, in general when W is not compact, we do not have
any signature formula for x{W) and x(WnN{G710,...,G;%0}). This seems
to be a very difficult problem.

26



Chapter 4

Some results on the topology
and geometry of
semi-algebraic sets

In this chapter, we recall briefly the definition and the main properties of
semi-algebraic sets and semi-algebraic maps. Then we give results on the
topology and the geometry of semi-algebraic sets, that are singular versions
of the results presented in Chapter 2. Qur main references for the results of
the first section of this chapter are [BR] and [BCR].

4.1 Definitions and important properties

Definition 4.1.1 A subset V C R" is called semi-algebraic if its admits a
representation of the form:

s Ty
V= J[{z eR™| Py;(2)oi;0},
i=1j=1
where, for eachi=1,...,5 andj=1,...,7rj:

oi; € {<,=,>} and P € Rlza,. .., zn)-

Examples:
e Real algebraic sets are semi-algebraic.
o A semi-algebraic subset of R is either empty or a finite union of inter-

vals (eventually reduced to a point or unbounded).
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Let us list some important properties of semi-algebraic sets.

Proposition 4.1.2 1. The family of semi-algebraic sets is closed with
respect to the set-theoretic operations of finite union, finite intersection
and complementation.

2. A semi-algebraic set has o finite number of connected components and
is locally connected.

3. (The Tarski-Seidenbery theorem) The projection of a semi-algebraic
set is semi-algebraic.

4. The closure X of a semi-algebraic set X, ils interior X and its frontier
X\ X are semi-algebraic.

Definition 4.1.3 Let X C R™ and Y C R™ be semi-algebraic sets. A map

f: X — Y is called semi-algebraic if its groph is a semi-algebraic set of
Rt

Proposition 4.1.4 Let f : X — Y be a semi-algebraic map. Then the
image f(X) CY is a semi-algebraic set.

Theorem 4.1.5 (Hardt’s theorem} Let X C R and Y CR™ be two semi-
algebraic sets and let f : X — Y be a semi-algebraic continuous map. There
ezists o finite partition of Y into semi-algebraic sets Y = UEZIY:,,- such that
[ is semi-algebraically trivial over each Yj. This means that there emists a
semi-algebraic set F; and a semi-algebraic homeomorphism hj 1Y) -
Y; x Fj such that the following diagram commutes:

hj
ffypcx —  YyxF
f \ / prajection
;Y
Moreover if Z1, . . ., Z, are finitely many semi-algebroic subsets of X, we can

ask that each trivialization hj : f71(Y;} — Yj x Fj is compatible with all the
Zji's.

Theorem 4.1.6 Every semi-algebraic set admits a semi-algebraic and finite
Whitney stratification. This means that if X C R® is a semi-algebraic set
then there exists o finite semi-algebraic partition of X, X = I_Ig-=15j such
that each S; is a smooth semi-algebraic manifold and this partition is a
Whitney stratification of X.
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We end this section with an important result on Whitney stratified sets
(not necessarily semi-algebraic). Let X ¢ R” be a closed Whitney stratified
set and let f: R" — R™ be a smooth map such that:

1. fix 1s proper,
2. for each stratum S of X, the restriction fig: S — R™is a submersion.

Definition 4.1.7 We call fix a proper stratified submersion.

Theorem 4.1.8 (Thom’s first isotopy lemma) Let fix : X — R™ be a
proper stratified submersion. Then fix is trivial i.e. there exists an homeo-
morphism h . X — R™ x fl}l (0) such that the following diagram commutes:

h
X — R™x flj,(l(o
f| X N\ / projection
B™

4.2 Integration with respect to the Euler charac-
teristic and Poincaré-Hopf type theorems
In this section, we present Viro’s method of integration with respect to the
Euler characteristic with compact support (see [Vi]). We derive a Morse
theory type theorem for semi-algebraic functions on semi-algebraic sets.
We first give the definition of the Euler characteristic with compact sup-
port, denoted by x.. Our definition is specific to the semi-algebraic case and

there are more general definitions. If X C R” is a semi-algebraic set then it
is possible to write it in the following way (see [BCR], Theorem 2.3.6):

X = Ug'zlcj',

where Cj; is semi-algebraically homeomorphic to ] -1, 1[% (C; is called a cell
of dimension d;). We set x.(X) = Ej—:l(-—l)di.

Remark 4.2.1 This definition of x. does not depend on the cell decompo-
sition.

Proposition 4.2.2 o If X is compact, then x.(X) = x(X),

o . is multiplicative: Xe(X x Y)= xe(X) % x(Y),
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e e is additive: x(X UY) = x(X) + x(Y),

e . is invariant by (semi-algebraic) homeomorphism.

Examples: xo({*}} = 1, xc(R) = =1, x([0, +oc[} =0, xe(R?) = 2,
x({(z,y) € R? | z > 0,y > 0}) = 1 because the open first quadrant is
the product |0, +00[x]0, +-o0[.

Remark 4.2.8 The Fuler characteristic with compact support is not invari-
ant by homotopy.

Definition 4.2.4 Let X C R"be a semi-algebraic set. A constructible func-
tion @ X — Z is a Z-valued function that can be written as a finite sum:

= Z m;lx;,

icl
where X; s a semi-algebraic subset of X.

The sum and the product of two constructible functions on X are again
constructible. The set of constructible functions on X is thus a commutative
ring, denoted by F(X).

Definition 4.2.5 If p € F(X) then we set:
/ pdxe = Y mixe(Xi),
X iel

where ¢ = 3 ..y milx,. The integral |, 5 Pdxc s called the Euler integral of
.

Definition 4.2.6 Let f : X — Y be a continuous semi-algebraic map and
let ¢ : X — Z be a constructible function. The pushforward fup of v along
f is the function fyp : Y — Z defined by:

frply) = / pdxe.
S

Proposition 4.2.7 The pushforward of a constructible function is a con-
structible function.
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Proof. Let us write ¢ = 3 ;c;milx;. By Hardt’s theorem, there is a finite
semi-algebraic partition Y = LijesY; such that, over each Yj, there is a
semi-algebraic trivialization of f compatible with the X;’s. Hence, since for
any y € Y, fue(y) is equal to 3, mix(X; N f~(y)), we see that fip is
constant on each Y;. ]

Theorem 4.2.8 {Fubini’s theorem) Let f : X — Y be a continuous semi-
algebraic map and let @ be a constructible function on X. Then we have:

/ fepdxe = / wdXc-
Y X

Proof. We keep the notations of the previous proof. let j € J and y; € Y;.
Then, for every ¢ € I, f~1(¥;) N X; is semi-algebraically homeomorphic to
Y; x (f~1(y;) N X;). Therefore, we have:

/ fupdx. = ZXc(yg)f*‘P ZXC(Y)Zszc(f yj ﬂ X)

JedJ jeld iel
Soms Y xel¥i)xelF T ) N Xa) = Yo may  xe(fTH ) N K} =
el JeJ el jed
Zm:;Xc(X'i):/ wdxe.
el X

d

Let us give a nice application of this theory. Let X C R" be a closed semi-
algebraic set equipped with a finite semi-algebraic Whitney stratification:
X = UpeaSs. Let f:R" =R bea C2-semi-algebraic function.

Definition 4.2.9 A point p € X is a critical point of fix if it is a critical
point of fis(p), where S(p) is the stratum that contains p.

Definition 4.2.10 If p is an isolated critical point of fix, we define the
index of f ot p by:

ind(f, X, p) = 1 - x(X n{f = f(p) — 8} N BZ (),
where 0 < § K e K 1.

Theorem 4.2.11 If X is compact and fix has a finite number of crilical
points p1,. .., P then:

k
x(X) = ind(f, X, p:).

i=1
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Proof. For all z € X, let ¢(z) = x(X N fHzT)N B™{(z)) where z~ is a
regular value of f close to f(z) with 2= < f(x). Note that ¢ is constructible

because @(z) =1 if z ¢ {p1,..., P}
Applying Fubini’s theorem, we get:

/Xw(w)dxc = /R (/f_l(y) w(m)d'xc) dxc.

For any y € R, let y~ be a regular value of fx close to y with y~ < y. Let
us denote by qi, - . .,gs the critical points of f|x lying in f~'(y). We have:

Xe(X OV YY) = xelX N F 7T\ Ui BE () +

N xe(XOf My )N BR @) =

i=1

Xe(X N F ) \ UL BR(@) + D ele) =

i=1

XC(X N f_l(y) \ {QI: s »fls}) + Z KP(QZ) =

i=1
f)(nf—l(y)\{qh__,__qs} p(z)dxe(z) + 3 iy pl@) = ff—l(y) p(z)dxc(z).

Since X is compact, f(X) is a compact subset of R. Let us choose |4, B]
such that f(X) ¢)A, B]. Let aq < g < --- < o be the critical values of f.
Let us write:

]A, B] =]ao,a1] ; ]oq,ag] ... v ]ag_l, ag].

Since xc(]a, b)) = 0 and fixnjo; e[ 18 & trivial fibration, we obtain that:

z = c y~ e = U,
/R(/fl{y)fp( Jdxe)dxe /]A,B]X (XN fFHy ))dxe =0

and so,

/ti(m)dxc = 0.

[ elahixe =xelX\ (o) + 31 S, o),

=1

But:

and we find that: .
0= x{X) = > ind(f, X, p).
i=1
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Examples: o P

In a recent paper [Dul2], we generalized this result to the case of closed
semi-algebraic sets. Let us present these results now. Let X C R™ be
a closed semi-algebraic set equipped with a semi-algebraic finite Whitney
stratification (Sq)aeca- Let f: R® — Rbea C? semi-algebraic function such
that fix : X — R has a finite number of critical points p1, ..., Pk

Definition 4.2.12 Let + € {<,=,2}. We define A} by:

= {aeR B — x(Lk=(XN{f* B})) is not constant
in a neighborhood of a}.

Here Lk™(Y) =Y N S%~!, R > 1, for any semi-algebraic set ¥ of R”.
Lemma 4.2.13 The sets A?, A? and A? are finite.
We can write A% = {e1,...,a,} where a; < ag < ... < a, and:
R\ AF =] - 00,a1[ U a1, az[ U+~ U Jar_1, ar[ U ]ar, +o0].

On each connected component of R\A%, the function 8 — X(Lk°° (Xn{f <

B}) is constant. For each j € {0,...,r}, let o] be an element of |aj, aj41[
where ag = —o0 and ary1 = +oo.

Theorem 4.2.14 We have:
k 7
X(X) =3 ind(f, X,pi) + > x(Lk®(X n{f < af }))
i=1 =0

=2 x(Lk®(X N {f < as}))-

J=1
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Similarly, we can write A? = {by,...,bs} with by < by < --- < bs and:
R\ A7 =] — 00,by[ U Jby, b U+ - U Jby—1, bs[ U Jbs, +o00[.
For each i & {0,...,s}, let ] be an element in ]b;, biy1[ with bg = —co and
b5+1 = 4-00.
Theorem 4.2.15 We have:
k 5
x(X) =Y ind(=f, X,p) + Y _x(Lk®(X 0 {f 2 5]})

i=1 F=0
=) x(LK®(X N {f = b))
i=1
Let us write A? ={ec1,...,c} with ¢ < e2 <... < ¢ and:
R\A? =] — 0, Cl[ U ]C1, Cg[ U---u ]thl, Ct[ U }Ct, -i—OO[.
For each i € {0,...,t}, let ¢ be an element in Je;, ciy1[.
Theorem 4.2.16 We have:
k k
2x(X) — x(Lk®(X)) = Y ind(f, X, pi) + ) ind(—f, X, p)+

i=1

SO xX(Lk®(X N {f =¢f D) = D x(LkX(X n{f =]}
i=0 =1

When X = R", we find global versions of the Khimshiashvili formula
and the Arnol’d-Wall formula presented in Chapter 2.

Theorem 4.2.17 We have:

1= deg, VS + 3 x(LkX({f < af}) = 3 x(Lk®({f < a;})) =
§=1

=0

(1) degoo V5 + 3 x(LEX({f 2 b7 1) = D x(Lk=({f 2 4}).
j=1I

=0

If n is even then we have:

2 = 2deg, Vf+ Y x(Lk®({f = ¢f 1)) = D x(Lk®({f = ¢;}))-

=0 7=1
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Here degy,V f is the degree of the map % : Sﬁ_l — 8™ where S??_l is a
sufficiently big sphere.

Remark 4.2.18 The third equality of this last theorem was discovered by
Sekalski [Se] for n = 2.

4.3 Gauss-Bonnet type theorems

In Chapter 2 of this mini-course, we gave a Gauss-Bonnet formula for a
smooth compact hypersurface M C R™ Here we present a version for
smooth submanifolds of R® and afterwards we give semi-algebraic versions
of the Gauss-Bonnet theorem.

4.3.1 Smooth case

Let M C R” be a smooth submanifold of dimension ¢ {1 < d < n—1). Let
x € M and let S, denotes the unit sphere in (T, M )l. Let v € S, and let
Il be the second fundamental form of M at z along the vector v. It is
defined as follows:

II o(z1, x2) = —(DV(x)(x1), m2},
where:
e V is a vector field in R™ normal to M such that V(z) = v,
o 1,20 € TL M.
The form [1, is bilinear and symmetric.
Definition 4.3.1 For i€ {0,...,d} and for x € M, we define K;(z) by:
Ki(z) = f i1 L, 0)dv,

where o; is the i-th elementary symmetric function of the eigenvalues of
II..,. We call the K;’s the i-th Lipschitz-Killing curvatures.
Remark 4.3.2 o Ifiis odd then Ki(z) =0.

1
Sn—d+i-1

¢ The quantity K; is intrinsic (here s;, is the volume of S*).
q

The following Gauss-Bonnet theorem is due to Fenchel [Fe] and Allen-
doerfer [Al]
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Theorem 4.3.3 (Gauss-Bonnet theorem) If M is compact then:

X(M) = —— /M Ka(z)da.

Remark 4.3.4 This theorem is trivial if M is odd-dimensional because both
sides of the equality vanish.

The following theorem is due to Weyl [We].
Theorem 4.3.5 (Volume of the tube) If r > 0 is small enough, then:

d

1 ,
vol(Tub,. (M)) = ——/ K,-scd:r-rn_d“.
(e (M) =35 f )

Here Tub, (M) is the tubular neighborhood of radius r around M.

Example Let C ¢ R® be the circle centered at the origin and of radius R.
Then Tub,(C) is a torus. Applying the previous theorem, we obtain:

vol(Tub..(C)) = 3—-1——1 / VolStder? = %(QW)(QTFR)?‘Q.
c

Hence we recover the well-known result:

vol{Tub,(C)) = 2x>Rr.

4.3.2 Exchange formulas

In this subsection, we explain how to give a topological proof of the Gauss-
Bonnet theorem using Morse theory.

Let M < B™ be a smooth submanifold of dimension d (1 < d <n—1).
For almost all v € S™~L, the function Ul M =R, z— (v,z) is a Morse
function and hence admits isolated non-degenerate critical points {p;}ier,
with respective indices {; }ier. Let U € M be a bounded borelian set. We
set p(U,v} =32 piey(—l))‘i (this sum is finite since U is bounded).
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The following proposition is proved in [La].

Proposition 4.3.6 (Exrchange formula) We have:

/UKd(m)dm = /:gn_l p(Uv)dv.

As a corollary, we recover the above Gauss-Bonnet formula.

Corollary 4.3.7 If M is compact, then we have:
] Kd(ﬂs)d&&' = Sn_lx(ﬂ/f).
M

4.3.3 Singular semi-algebraic case

Let X C R™ be a closed semi-algebraic set equipped with a finite and semi-
algebraic Whitney stratification: X = tgeaSa-

Lemma 4.3.8 There exists a semi-algebraic set T1(X) € §™7! of dimen-
sion strictly less than n — 1 such that if v ¢ T'1(X), then '”|*X has a finite
number of critical points pY,....p},.

Definition 4.3.9 Let U be a bounded borelian set of X. We set:

Ao(X,U) = — /Sn_l 3 ind(*, X, a)dv,
ell

Sn—1

where ind(v*, X,2) = 0 if = is not a critical point of vy The measure
Ao(X, —) is called the Gauss-Bonnet measure.

The following results are due to Broecker and Kuppe [BK] and Fu [Fu].

Proposition 4.3.10 1. (Gauss-Bonnet theorem) If X is compact, then
we have:

Ao(X, X) = x{X)-
2. The measure Ag(X,—) is invariant by semi-algebraic isometries.

Now we explain how to generalize the above Gauss-Bonnet theorem when
X is only closed (see [Du9] and {Dul2])

Lemma 4.3.11 There exists a semi-algebraic set To(X) of S* of dimen-
sion strictly less than n — 1 such that if v ¢ T'a(X), AE* = Af., =AL =0.
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Corollary 4.3.12 If v ¢ I'|(X) UTa(X) then for all @ € R, we have:

x(LkOO(X N{v* = a})) = 2x(X) - X(Lko‘j(}())—
Ly ty
Y ind(v*, X,pi) — ) ind(=v", X, pi).

=1 i=1

Proof. Apply Theorem 4.2.16. m]

Let (Kg)r>0 be an exhaustive family of compact sets of X, that is a
family (K r)r>o of compact sets of X such that Ug»oKp = X and Kr < Kp
if R < R. For every R > 0, we have:

1
Ao(X, X 1 Kp) = - 1/ Y nd(v, X, @),
LSS e XK g

Moreover the following limit:

Hm Z ind(v*, X, z},

R
oo zeXNKg

is equal to 3,y ind(v*, X, z) which is uniformly bounded by Hardt’s the-
orem. Applying Lebesgue’s theorem, we obtain:

/ lim Z ind(v™, X, z)dv =
5

-1 R—+o0
PRI e XKy

1 / Z ind(v*, X, z)dv.
"l rex

fn—1

Qim Ao(X, X 1K) =

Sn—1

Definition 4.3.13 We set:
AU(X,X) = lim AD(X,XDKR),
R—4o00
where (Kgr)rwo 15 an ezhaustive family of compact sets of X.

Theorem 4.3.14 If X is a closed semi-algebraic set then:
1
Bo(X, X) = x(X) = 5x(Lk™(X))—

zsi_l /S x (L (X 1 {v* = 0}))dv.
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Proof. We have:

Ap{X, X) =

/ﬂ_ Z ind(v*, X, z)dv =

Sn—1

1
2sp1

/ Z ind(v*, X, z) + ind(—v", X, z)dv =
Sn—lw be

1
[ 20 xR (0) ~ (L N o = 0o
n—1 J&n-1
by Corollary 4.3.12. a
If X is smooth of dimension d, 1 < d < n — 1, then:

Ao(X, X)

/ Ky(z)dz.

If d is even then x(Lk®(X)) = 0 because Lk*(X) is a compact odd-
dimensional manifold. Furthermore, Lk* (X n{v* = 0}) is equal to XN{v* =
0} N Sﬁ_l where R >» 1 ; it is thus the boundary of a compact odd-
dimensional manifold with boundary and therefore its Euler characteristic
is equal to x(X N{v* = 0}N BR), which is actually x(X N {v* = 0}). Hence,
if d is even, the Gauss-Bonnet formula takes the following form:

/ x(X N {v* =0})dv
gn-1

/ Ky(z)dz = x(X) —

Sn—1 Sip—-1

Examples:

1. Let Vi = {(z1, 0,23} € R® | 2} + 22 — 23 — 1 = 0} be the one-sheeted
hyperboloid. We have fv Ko(z)dz = —47/2.

2. Let Vo = {(z1, 2, 23) € R® | 27 — 2§ — 23 — 1 = 0} be the two-sheeted
hyperboloid. We have fi. Kg(:r)da: =47 (2 — V2).

3. Let V3 = {(x1,z2,23) € R3 | 2% + 23 — z3 = 0} be the elliptic
paraboloid. We have f;, Ko(z)dr = 4r.

4. Let Vy = {{z1,22,23) € R} | x? - x3 — z3 = 0} be the hyperbolic
paraboloid. We have f;, Kap{x)dz = —d=.

- fXKd(st)d:c =0,

Sn—1
39

If d is odd then:

Ao(X, X) =



and,
x(Lk®(X n{v" =0})=10,

because Lk (X M {v* = 0}) is an odd-dimensional compact manifold . Fur-
thermore for the same reasons as above, x(X) = $x(Lk>(X)). So, in case of
an odd-dimensional closed semi-algebraic manifold, the above Gauss-Bonnet
theorem is trivial, as in the compact case. However, the Euler characteristic
of such a manifold is not necessarily zero and one can ask if it is possible to
express it in terms of curvatures. This is actually the aim of the following
theorem that we proved in [Dull].

Theorem 4.3.15 Let X C R™ be a closed semi-algebraic set which is a
smooth submanifold of dimension d, 1 <d <n—1. If d is even, we have:

d-2
1 d 1
x(X) = f Kg(z)dr + LHm — 1f Koidz,
( ) X d( ) i=ZoR Rd Q XﬂBR

Sp—1 —+00 Sp—dt2i—1bd—2i

where b; denotes the volume of the unit ball of dimension i. If d is odd, we

have:
d—1

5

1
¥(X) = lim — f Ko;dx.
(X) « R—+oo Sn—dt2i—1ba—2i R [xqp,

1=
Examples:

o If d = 1 then X is a smooth semi-algebraic curve. The above formula
just states that the number of non-compact connected components of
NBY

X is equal to limp_. .00 k’—m‘t—hég—ﬂl.

e If X is of dimension 3, then the formula relates x(X) to the volume
form and the scalar curvature Ks. Namely, we have:
_ 1 ) vol(X N B%)
X)= _— Kyd _
X(X) = Hm e R /XﬂBR e+ lm

Let us give an application of this equality. If K5 > 0 then x{X) >0
and x(Lk®(X)) > 0. If the link Lk*(X} is orientable then we can
conclude that Lk*(X) has at least one connected component homeo-
morphic to §2.

Let us end with some remarks and questions.
1. A version of Theorem 4.3.14 was proved by Dillen and Kuehnel for

submanifolds with finitely many cone-like ends in {DK].
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9. A version of Theorem 4.3.15 was proved by Shiohama in [Sh] for a
class of riemaninan surfaces (i.e. d = 2).

3. Is it possible to enlarge the class of riemannian manifolds for which a
similar formula is valid 7

4. Ts it possible to replace in Theorem 4.3.15 the distance on R™ with the
intrinsic distance on X, in order to get a fully intrinsic formula ?
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