Singularities and Characteristic Classes for Differentiable Maps I

Toru Ohmoto
Hokkaido University

July 24, 2012

Eu gostaria de agradecer os organizadores por me convidar esta conferência maravilhosa!

What's about ?

This mini-course is about

What's about?

This mini-course is about

... about the polynomial named in honor of him

What's about ?

- Alg. equation over $\mathbb{C} \quad(\rightsquigarrow \mathcal{K}$-classification $)$

$$
P(x)=x^{d}+a_{1} x^{d-1}+\cdots+a_{d}=0, \quad \sharp v i r \text { sol. }=d
$$

taking account of multiplicities $e=1+\mu$ (nondeg. sol. $\leftrightarrow \mu=0$)

What's about?

- Function $y=P(x) \quad(\rightsquigarrow \mathcal{A}$-classification $)$

$$
f: M \rightarrow N \quad\left(M=N=\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

What's about?

- Function $y=P(x) \quad(\rightsquigarrow \mathcal{A}$-classification $)$

$$
f: M \rightarrow N \quad\left(M=N=\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

$\sharp_{v i r}$ crit. pt $=$

What's about ?

- Function $y=P(x) \quad(\rightsquigarrow \mathcal{A}$-classification $)$

$$
f: M \rightarrow N \quad\left(M=N=\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

M \qquad -
$\not \sharp_{v i r}$ crit. pt $=\int_{M} \mu(f, x) d \chi$

What's about?

- Function $y=P(x) \quad(\rightsquigarrow \mathcal{A}$-classification $)$

$$
f: M \rightarrow N \quad\left(M=N=\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

M
$\sharp_{v i r}$ crit. pt $=\int_{M} \mu(f, x) d \chi=2 d-2$

What's about?

- Function $y=P(x) \quad(\rightsquigarrow \mathcal{A}$-classification $)$

$$
f: M \rightarrow N \quad\left(M=N=\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

$\not \sharp_{v i r}$ crit. pt $=\int_{M} \mu(f, x) d \chi=2 d-2=\operatorname{deg} f \cdot \chi(N)-\chi(M)$

What's about?

- Function $y=P(x) \quad(\rightsquigarrow \mathcal{A}$-classification $)$

$$
f: M \rightarrow N \quad\left(M=N=\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

$$
\begin{aligned}
\sharp_{\text {vir }} \text { crit. pt } & =\int_{M} \mu(f, x) d \chi=2 d-2=\operatorname{deg} f \cdot \chi(N)-\chi(M) \\
& =c_{1}(T N) \cap f_{*}[M]-c_{1}(T M) \cap[M]
\end{aligned}
$$

What's about?

- Function $y=P(x) \quad(\rightsquigarrow \mathcal{A}$-classification $)$

$$
f: M \rightarrow N \quad\left(M=N=\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

$$
\begin{aligned}
\sharp_{\text {vir }} \text { crit. pt } & =\int_{M} \mu(f, x) d \chi=2 d-2=\operatorname{deg} f \cdot \chi(N)-\chi(M) \\
& =c_{1}(T N) \cap f_{*}[M]-c_{1}(T M) \cap[M] \\
& =c_{1}\left(f^{*} T N-T M\right) \cap[M]
\end{aligned}
$$

What's about?

- Function $y=P(x) \quad(\rightsquigarrow \mathcal{A}$-classification $)$

$$
f: M \rightarrow N \quad\left(M=N=\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

$$
\begin{aligned}
\not \sharp_{\text {vir }} \text { crit. pt } & =\int_{M} \mu(f, x) d \chi=2 d-2=\operatorname{deg} f \cdot \chi(N)-\chi(M) \\
& =c_{1}(T N) \cap f_{*}[M]-c_{1}(T M) \cap[M] \\
& =c_{1}\left(f^{*} T N-T M\right) \cap[M] \\
& =\text { Thom polynomial of } A_{1} \text { for } f
\end{aligned}
$$

I will talk about a generalization of this picture, in particular,

> hunting invariants of map-germs by localizing 'higher Tp'

Contents

- Preliminary: very basics
- Thom polynomials for singularities of maps
- Thom polynomials for multi-singularities of maps
- Higher Thom polynomials associated to CSM class
- Computing numerical invariants: Bezout type theorems
- Tp for real singularities and Vassiliev type invariants

We works in the complex holomorphic context throughout. To be elementary and self-contained as much as possible.

Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

$$
\mathcal{O}(m, n):=\left\{f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0 \text { holomorphic }\right\}
$$

Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

$$
\mathcal{O}(m, n):=\left\{f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0 \text { holomorphic }\right\}
$$

- \mathcal{A}-classification

Classifies map-germs up to isomorphisms of source and target $\mathcal{A}=\operatorname{Diff}\left(\mathbb{C}^{m}, 0\right) \times \operatorname{Diff}\left(\mathbb{C}^{n}, 0\right)$ acts on $\mathcal{O}(m, n)$ by $(\sigma, \tau) . f:=\tau \circ f \circ \sigma^{-1}$

Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

$$
\mathcal{O}(m, n):=\left\{f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0 \text { holomorphic }\right\}
$$

- \mathcal{A}-classification

Classifies map-germs up to isomorphisms of source and target
$\mathcal{A}=\operatorname{Diff}\left(\mathbb{C}^{m}, 0\right) \times \operatorname{Diff}\left(\mathbb{C}^{n}, 0\right)$ acts on $\mathcal{O}(m, n)$ by
$(\sigma, \tau) . f:=\tau \circ f \circ \sigma^{-1}$

- K-classification

Classifies the zero locus $f^{-1}(0)$ as a scheme (i.e., defining ideal) up to the isomorphisms of source.
$\mathcal{K} \subset \operatorname{Diff}\left(\mathbb{C}^{m} \times \mathbb{C}^{n}, 0\right)$, preserving fibers $* \times \mathbb{C}^{n}$ and $\mathbb{C}^{m} \times 0$, acts on $\mathcal{O}(m, n)$ measuring the tangency of graph $\boldsymbol{y}=f(\boldsymbol{x})$ and $\boldsymbol{y}=0$

Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

$$
\mathcal{O}(m, n):=\left\{f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0 \text { holomorphic }\right\}
$$

- \mathcal{A}-classification

Classifies map-germs up to isomorphisms of source and target
$\mathcal{A}=\operatorname{Diff}\left(\mathbb{C}^{m}, 0\right) \times \operatorname{Diff}\left(\mathbb{C}^{n}, 0\right)$ acts on $\mathcal{O}(m, n)$ by
$(\sigma, \tau) . f:=\tau \circ f \circ \sigma^{-1}$

- K-classification

Classifies the zero locus $f^{-1}(0)$ as a scheme (i.e., defining ideal) up to the isomorphisms of source.
$\mathcal{K} \subset \operatorname{Diff}\left(\mathbb{C}^{m} \times \mathbb{C}^{n}, 0\right)$, preserving fibers $* \times \mathbb{C}^{n}$ and $\mathbb{C}^{m} \times 0$, acts on
$\mathcal{O}(m, n)$ measuring the tangency of graph $\boldsymbol{y}=f(\boldsymbol{x})$ and $\boldsymbol{y}=0$

- $\mathcal{A} \subset \mathcal{K} \quad$ Thus, orbits \mathcal{A}. $f \subset \mathcal{K} . f$

Classification of map-germs: Infinitesimal stability

- $f=\left(x^{3}+y x, y\right)$ and $g=\left(x^{3}, y\right)$ in $\mathcal{O}(2,2)$ are \mathcal{K}-equivalent but not \mathcal{A}-equivalent. \mathcal{A}. $f \neq \mathcal{K}$. f

Classification of map-germs: Infinitesimal stability

- $f=\left(x^{3}+y x, y\right)$ and $g=\left(x^{3}, y\right)$ in $\mathcal{O}(2,2)$ are \mathcal{K}-equivalent but not \mathcal{A}-equivalent. \mathcal{A}. $f \neq \mathcal{K}$. f
- The \mathcal{A}-class of $f=\left(x^{3}+y x, y\right)$ is called a cusp or A_{2}-singularity. The discriminant (=singular value curves on the plane) looks as

Classification of map-germs: Infinitesimal stability

- $f=\left(x^{3}+y x, y\right)$ and $g=\left(x^{3}, y\right)$ in $\mathcal{O}(2,2)$ are \mathcal{K}-equivalent but not \mathcal{A}-equivalent. $\mathcal{A} . f \neq \mathcal{K} . f$
- The \mathcal{A}-class of $f=\left(x^{3}+y x, y\right)$ is called a cusp or A_{2}-singularity. The discriminant (=singular value curves on the plane) looks as

- $f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$ is a stable germ if taking any small perturbation of any representative $f: U \rightarrow \mathbb{C}^{n}$, still the same singularity remains at some point nearby 0 . The above cusp singularity is stable.

Classification of map-germs: Infinitesimal stability

- $f=\left(x^{3}+y x, y\right)$ and $g=\left(x^{3}, y\right)$ in $\mathcal{O}(2,2)$ are \mathcal{K}-equivalent but not \mathcal{A}-equivalent. $\mathcal{A} . f \neq \mathcal{K} . f$
- The \mathcal{A}-class of $f=\left(x^{3}+y x, y\right)$ is called a cusp or A_{2}-singularity. The discriminant (=singular value curves on the plane) looks as

- $f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$ is a stable germ if taking any small perturbation of any representative $f: U \rightarrow \mathbb{C}^{n}$, still the same singularity remains at some point nearby 0 . The above cusp singularity is stable.
- (J. Mather IV) If f is a stable germ, $\mathcal{A} . f=\{$ Stable germs $\} \cap \mathcal{K} . f$

Classification of map-germs: Jet-extension

Given a map $f: M \rightarrow N$, we may think of it as
a family of mono-germs $f: M, x \rightarrow N, f(x)$ parameterized by the source space M.
(cf. a family of multi-germs parametrized by the target N)

Classification of map-germs: Jet-extension

Given a map $f: M \rightarrow N$, we may think of it as
a family of mono-germs $f: M, x \rightarrow N, f(x)$ parameterized by the source space M.
(cf. a family of multi-germs parametrized by the target N)

Classification of map-germs: Jet-extension

Given a map $f: M \rightarrow N$, we may think of it as
a family of mono-germs $f: M, x \rightarrow N, f(x)$ parameterized by the source space M.
(cf. a family of multi-germs parametrized by the target N)

$f: M, x \rightarrow N, y$ is stable
$\Longleftrightarrow j f: M \rightarrow J(T M, T N)$ is transverse to the \mathcal{A}-orbit at x.
$\Longleftrightarrow j f: M \rightarrow J(T M, T N)$ is transverse to the \mathcal{K}-orbit at x (Mather)

Classification of map-germs: Jet-extension

Notation: For a \mathcal{K} (or \mathcal{A})-orbit η in $\mathcal{O}(m, n)$, define

$$
\eta(f):=\{x \in M \mid \text { the germ } f \text { at } x \text { is of type } \eta\}=j f^{-1}(\eta(M, N))
$$

Classification of map-germs: Jet-extension

Notation: For a \mathcal{K} (or \mathcal{A})-orbit η in $\mathcal{O}(m, n)$, define

$$
\eta(f):=\{x \in M \mid \text { the germ } f \text { at } x \text { is of type } \eta\}=j f^{-1}(\eta(M, N))
$$

Of our particular interest is

$$
\operatorname{Dual}[\overline{\eta(f)}] \in H^{*}(M)
$$

If $\operatorname{codim} \eta=\operatorname{dim} M$ and M compact, this gives $\sharp \eta$-singular pts.

Classification of map-germs: Jet-extension

Notation: For a \mathcal{K} (or \mathcal{A})-orbit η in $\mathcal{O}(m, n)$, define

$$
\eta(f):=\{x \in M \mid \text { the germ } f \text { at } x \text { is of type } \eta\}=j f^{-1}(\eta(M, N))
$$

Of our particular interest is

$$
\operatorname{Dual}[\overline{\eta(f)}] \in H^{*}(M)
$$

If $\operatorname{codim} \eta=\operatorname{dim} M$ and M compact, this gives $\sharp \eta$-singular pts.
"counting η-singular points $=$ describing this cohomology class"

Chern class of vector bundles: Definition

Recall a basic notion in topology:

A vector bundle $p: E \rightarrow M$ is a locally trivial fibration with fiber \mathbb{C}^{n} and structure group $G L_{n}$.

The right one is called the trivial bundle. How can we measure 'non-trivial gluing' in the left?

Chern class of vector bundles: Definition

Recall a basic notion in topology:

Take a section $s: M \rightarrow E$ and observe its intersection with Z, that leads us the definition of the top Chern class of E

$$
c_{n}(E):=s^{*} \operatorname{Dual}[Z]=\operatorname{Dual}\left[s^{-1}(Z)\right] \in H^{2 n}(M ; \mathbb{Z})
$$

For the above picture, $c_{n}($ Left $) \neq 0$ and $c_{n}($ Right $)=0$

Chern class of vector bundles: Definition

Theorem 2.1 (or Definition: see Milnor's or Hirzebruch's textbooks.)
The Chern class of complex vector bundles is uniquely characterized as the assignment

$$
\text { vector bdle } E \rightarrow M \rightsquigarrow c_{i}(E) \in H^{2 i}(M ; \mathbb{Z}), \quad(i=0,1,2, \cdots)
$$

satisfying the following axioms:

Chern class of vector bundles: Definition

Theorem 2.1 (or Definition: see Milnor's or Hirzebruch's textbooks.)
The Chern class of complex vector bundles is uniquely characterized as the assignment

$$
\text { vector bdle } E \rightarrow M \rightsquigarrow c_{i}(E) \in H^{2 i}(M ; \mathbb{Z}), \quad(i=0,1,2, \cdots)
$$

satisfying the following axioms:

- $c_{0}(E)=1$ and $c_{i}(E)=0(i>n=\operatorname{rank} E)$, i.e., $c(E):=\sum_{i \geq 0} c_{i}(E)=1+c_{1}(E)+\cdots+c_{n}(E):$ total Chern class

Chern class of vector bundles: Definition

Theorem 2.1 (or Definition: see Milnor's or Hirzebruch's textbooks.)
The Chern class of complex vector bundles is uniquely characterized as the assignment

$$
\text { vector bdle } E \rightarrow M \rightsquigarrow c_{i}(E) \in H^{2 i}(M ; \mathbb{Z}), \quad(i=0,1,2, \cdots)
$$

satisfying the following axioms:

- $c_{0}(E)=1$ and $c_{i}(E)=0(i>n=\operatorname{rank} E)$, i.e.,

$$
c(E):=\sum_{i \geq 0} c_{i}(E)=1+c_{1}(E)+\cdots+c_{n}(E): \text { total Chern class }
$$

- $c\left(f^{*} E\right)=f^{*} c(E)$ for the pullback via $f: M^{\prime} \rightarrow M$: naturality
- $c(E \oplus F)=c(E) \cdot c(F) \quad$: Whitney sum formula
- $c_{1}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ equals the divisor class $a \in H^{2}\left(\mathbb{P}^{1}\right) \quad$: normalization

Chern class of vector bundles: Remark

- Trivial bundle: $c_{1}\left(\epsilon^{1}\right)=0$, hence for the trivial n-bundle, $c\left(\epsilon^{n}\right)=c\left(\oplus \epsilon^{1}\right)=1$.

Chern class of vector bundles: Remark

- Trivial bundle: $c_{1}\left(\epsilon^{1}\right)=0$, hence for the trivial n-bundle, $c\left(\epsilon^{n}\right)=c\left(\oplus \epsilon^{1}\right)=1$.
- Tensor product of line bundles ℓ_{1}, ℓ_{2} over M :

$$
c_{1}\left(\ell_{1} \otimes \ell_{2}\right)=c_{1}\left(\ell_{1}\right)+c_{1}\left(\ell_{2}\right) \quad \text { (additive group law) }
$$

Chern class of vector bundles: Remark

- Trivial bundle: $c_{1}\left(\epsilon^{1}\right)=0$, hence for the trivial n-bundle, $c\left(\epsilon^{n}\right)=c\left(\oplus \epsilon^{1}\right)=1$.
- Tensor product of line bundles ℓ_{1}, ℓ_{2} over M :

$$
c_{1}\left(\ell_{1} \otimes \ell_{2}\right)=c_{1}\left(\ell_{1}\right)+c_{1}\left(\ell_{2}\right) \quad \text { (additive group law) }
$$

- The Chern class of a complex manifold M means $c(T M)$ of the tangent bundle. The top Chern class is the Euler characteristic:

$$
c_{n}(T M) \frown[M]=\chi(M) \cdot[p t] \in H_{0}(M)
$$

That is the Poincaré-Hopf theorem : for a vector field $v: M \rightarrow T M$

$$
c_{n}(T M)=\sum \operatorname{Ind}(v, p) \stackrel{\text { P.H. }}{=} \chi(M)
$$

Chern class of vector bundles: Remark

Difference Chern class: To measure the difference between two vector bundles E and F over the same base space, we define by using formal expansion $\frac{1}{1+A}=1-A+A^{2}-A^{3}+\cdots$

$$
c(F-E):=\frac{1+c_{1}(F)+c_{2}(F)+\cdots}{1+c_{1}(E)+c_{2}(E)+\cdots}
$$

Chern class of vector bundles: Remark

Difference Chern class: To measure the difference between two vector bundles E and F over the same base space, we define by using formal expansion $\frac{1}{1+A}=1-A+A^{2}-A^{3}+\cdots$

$$
c(F-E):=\frac{1+c_{1}(F)+c_{2}(F)+\cdots}{1+c_{1}(E)+c_{2}(E)+\cdots}
$$

Obviously,

- If $F=E \oplus E^{\prime}$, then $c(F-E)=c\left(E^{\prime}\right)$ by Whitney sum formula.
- For line bundles, $c\left(\ell^{\prime}-\ell\right)=\frac{1+b}{1+a}=(1+b)\left(1-a+a^{2}-\cdots\right)$ where $a=c_{1}(\ell)$ and $b=c_{1}\left(\ell^{\prime}\right)$

Thom polynomials of stable singularities

Now, return back to our setting:
Let $\eta \subset J(m, n)$ be a \mathcal{K}-orbit. Given a stable map $f: M \rightarrow N$,

$$
\overline{\eta(f)} \longleftrightarrow M \xrightarrow[(i d, f)]{\longrightarrow} M \stackrel{\downarrow}{\square} \stackrel{\rightharpoonup}{\square(M, N)}
$$

How to describe \quad Dual $[\overline{\eta(f)}] \in H^{*}(M)$

Thom polynomials of stable singularities

Theorem 3.1 (Thom ('57), Damon ('72) etc)

There exists a unique polynomial $t p(\eta) \in \mathbb{Z}\left[c_{1}, c_{2}, \cdots\right]$ in abstract Chern classes so that

- homogeneous in degree $=\operatorname{codim} \eta \quad\left(\operatorname{deg} c_{i}=2 i\right)$
- it depends only on $\eta \subset J(*, *+k)$,
- for any generic map $f: M \rightarrow N$ of map-codim. $\operatorname{dim} N-\operatorname{dim} M=k$, the polynomial evaluated by $c_{i}=c_{i}(f):=c_{i}\left(f^{*} T N-T M\right)$ expesses the singular locus of type η :

$$
\operatorname{tp}(\eta)(f)=\operatorname{Dual}[\overline{\eta(f)}] \in H^{2 \operatorname{codim} \eta}(M)
$$

We call $t p(\eta)$ the Thom polynomial of stable singularity type η

Thom polynomials of stable singularities

Example 3.2 (Thom ('56): Case of map codimension $k=0$)

Thom polynomials of stable singularities $\mathbb{C}^{2}, 0 \rightarrow \mathbb{C}^{2}, 0$ are

$$
\operatorname{tp}\left(A_{0}\right)=1, \quad \operatorname{tp}\left(A_{1}\right)=c_{1}, \quad \operatorname{tp}\left(A_{2}\right)=c_{1}^{2}+c_{2}
$$

type	normal form
$A_{0}($ regular $)$	$(x, y) \mapsto(x, y)$
$A_{1}($ fold $)$	$(x, y) \mapsto\left(x^{2}, y\right)$
$A_{2}($ cusp $)$	$(x, y) \mapsto\left(x^{3}+x y, y\right)$

Thom polynomials of stable singularities

Example 3.2 (Thom ('56): Case of map codimension $k=0$)

Thom polynomials of stable singularities $\mathbb{C}^{2}, 0 \rightarrow \mathbb{C}^{2}, 0$ are

$$
\operatorname{tp}\left(A_{0}\right)=1, \quad \operatorname{tp}\left(A_{1}\right)=c_{1}, \quad \operatorname{tp}\left(A_{2}\right)=c_{1}^{2}+c_{2}
$$

type	normal form
$A_{0}($ regular $)$	$(x, y) \mapsto(x, y)$
$A_{1}($ fold $)$	$(x, y) \mapsto\left(x^{2}, y\right)$
$A_{2}($ cusp $)$	$(x, y) \mapsto\left(x^{3}+x y, y\right)$

More examples of stable singularities $\mathbb{C}^{n}, 0 \rightarrow \mathbb{C}^{n}, 0$,

$$
\begin{aligned}
\operatorname{tp}\left(A_{3}\right) & =c_{1}^{3}+3 c_{1} c_{2}+2 c_{3} \\
\operatorname{tp}\left(A_{4}\right) & =c_{1}^{4}+6 c_{1}^{2} c_{2}+2 c_{2}^{2}+9 c_{1} c_{3}+6 c_{4} \\
\operatorname{tp}\left(I_{22}\right) & =c_{2}^{2}-c_{1} c_{3}, \cdots
\end{aligned}
$$

Localization formula

Let's compute $t p\left(A_{2}\right)$ by the restriction method due to Richard Rimanyi. Since codim $A_{2}=2$, the Thom polynomial has the form

$$
t p\left(A_{2}\right)=A c_{1}^{2}+B c_{2}
$$

and we want to determine the unknowns A, B.

Localization formula

Let's compute $t p\left(A_{2}\right)$ by the restriction method due to Richard Rimanyi. Since codim $A_{2}=2$, the Thom polynomial has the form

$$
t p\left(A_{2}\right)=A c_{1}^{2}+B c_{2}
$$

and we want to determine the unknowns A, B.

The key point is that the normal forms of stable germs admit a natural torus action $\mathbb{C}^{*}=\mathbb{C}-\{0\}$:

$$
\begin{aligned}
& \stackrel{(x, y) \xrightarrow{A_{2}}\left(x^{3}+y x, y\right)}{ } \\
& \rho_{0}=\alpha \oplus \alpha^{2} \quad \rho_{1}=\alpha^{3} \oplus \alpha^{2} \quad \alpha \in \mathbb{C}^{*}
\end{aligned}
$$

Localization formula

Let us think of α as the gluing map for the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^{N}}(1)$ over $\mathbb{P}^{N}(N \gg 0)$.

Localization formula

Let us think of α as the gluing map for the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^{N}}(1)$ over $\mathbb{P}^{N}(N \gg 0)$. Define two vector bundles of rank 2

$$
E_{0}:=\ell \oplus \ell^{\otimes 2}, \quad E_{1}:=\ell^{\otimes 3} \oplus \ell^{\otimes 2}
$$

Localization formula

Let us think of α as the gluing map for the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^{N}}(1)$ over $\mathbb{P}^{N}(N \gg 0)$. Define two vector bundles of rank 2

$$
E_{0}:=\ell \oplus \ell^{\otimes 2}, \quad E_{1}:=\ell^{\otimes 3} \oplus \ell^{\otimes 2}
$$

That is, take $\left\{U_{i}\right\}$ of the base giving a local trivialization of ℓ; glueing maps $g_{i j}: U_{i} \cap U_{j} \rightarrow G L_{2}$ for E_{0} and E_{1} are of the form

$$
U_{i} \cap U_{j} \xrightarrow{\alpha} \mathbb{C}^{*} \xrightarrow{\rho} G L_{2}, \quad \rho_{0}=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{2}
\end{array}\right], \quad \rho_{1}=\left[\begin{array}{cc}
\alpha^{3} & 0 \\
0 & \alpha^{2}
\end{array}\right],
$$

respectively.

Localization formula

Let us think of α as the gluing map for the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^{N}}(1)$ over $\mathbb{P}^{N}(N \gg 0)$. Define two vector bundles of rank 2

$$
E_{0}:=\ell \oplus \ell^{\otimes 2}, \quad E_{1}:=\ell^{\otimes 3} \oplus \ell^{\otimes 2}
$$

The normal form of $A_{2},(x, y) \mapsto\left(x^{3}+y x, y\right)$, is invariant under the action, thus we can glue the map on U_{i} 's together.

Localization formula

Let us think of α as the gluing map for the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^{N}}(1)$ over $\mathbb{P}^{N}(N \gg 0)$. Define two vector bundles of rank 2

$$
E_{0}:=\ell \oplus \ell^{\otimes 2}, \quad E_{1}:=\ell^{\otimes 3} \oplus \ell^{\otimes 2}
$$

The normal form of $A_{2},(x, y) \mapsto\left(x^{3}+y x, y\right)$, is invariant under the action, thus we can glue the map on U_{i} 's together. This defines a stable map $f_{A_{2}}: E_{0} \rightarrow E_{1}$ between the total spaces

A_{2}-singularity locus $A_{2}\left(f_{A_{2}}\right)=$ the zero section of E_{0}.

Localization formula

Localization formula

Compute the Chern classes. Put $a=c_{1}(\ell)$ and then

$$
H^{*}\left(\mathbb{P}^{N}\right)=\mathbb{Z}[a] /\left(a^{N+1}\right), \quad N \gg 0
$$

Note that $H^{*}\left(E_{0}\right)=H^{*}\left(E_{1}\right)=H^{*}\left(\mathbb{P}^{N}\right)$ via the pullback p_{0}^{*} and p_{1}^{*}.

$$
\begin{gathered}
c\left(E_{0}\right)=c\left(\ell \oplus \ell^{\otimes 2}\right)=(1+a)(1+2 a) \\
c\left(E_{1}\right)=c\left(\ell^{\otimes 3} \oplus \ell^{\otimes 2}\right)=(1+3 a)(1+2 a)
\end{gathered}
$$

Localization formula

Compute the Chern classes. Put $a=c_{1}(\ell)$ and then

$$
H^{*}\left(\mathbb{P}^{N}\right)=\mathbb{Z}[a] /\left(a^{N+1}\right), \quad N \gg 0
$$

Note that $H^{*}\left(E_{0}\right)=H^{*}\left(E_{1}\right)=H^{*}\left(\mathbb{P}^{N}\right)$ via the pullback p_{0}^{*} and p_{1}^{*}.

$$
\begin{gathered}
c\left(E_{0}\right)=c\left(\ell \oplus \ell^{\otimes 2}\right)=(1+a)(1+2 a) \\
c\left(E_{1}\right)=c\left(\ell^{\otimes 3} \oplus \ell^{\otimes 2}\right)=(1+3 a)(1+2 a) \\
c\left(f_{A_{2}}\right)=c\left(f^{*} T E_{1}-T E_{0}\right)=c\left(p_{1}^{*} E_{1}-p_{0}^{*} E_{0}\right)=\frac{(1+3 a)(1+2 a)}{(1+a)(1+2 a)}=\frac{1+3 a}{1+a} \\
=1+2 a-2 a^{2}+2 a^{3}-\cdots
\end{gathered}
$$

Thus we have $c_{1}\left(f_{A_{2}}\right)=2 a, c_{2}\left(f_{A_{2}}\right)=-2 a^{2}, \ldots$ etc.

Localization formula

Apply the Thom polynomial theorem to this map $f_{A_{2}}: E_{0} \rightarrow E_{1}$,

$$
\operatorname{tp}\left(A_{2}\right)\left(f_{A_{2}}\right)=\operatorname{Dual}\left[\overline{A_{2}}\left(f_{A_{2}}\right)\right]
$$

Localization formula

Apply the Thom polynomial theorem to this map $f_{A_{2}}: E_{0} \rightarrow E_{1}$,

$$
\operatorname{tp}\left(A_{2}\right)\left(f_{A_{2}}\right)=\operatorname{Dual}\left[\overline{A_{2}}\left(f_{A_{2}}\right)\right]
$$

Substitute

$$
c_{2}\left(E_{0}\right)=2 a^{2}, \quad c_{1}\left(f_{A_{2}}\right)=2 a, \quad c_{2}\left(f_{A_{2}}\right)=-2 a^{2}
$$

$$
\begin{aligned}
\operatorname{tp}\left(A_{2}\right)\left(f_{A_{2}}\right) & =A c_{1}^{2}+B c_{2} \\
& =A(2 a)^{2}+B\left(-2 a^{2}\right)=(4 A-2 B) a^{2} \\
\text { Dual }\left[\overline{A_{2}}\left(f_{A_{2}}\right)\right] & =\text { Dual }[\text { Zero }]=c_{2}\left(E_{0}\right)=2 a^{2}
\end{aligned}
$$

Localization formula

Apply the Thom polynomial theorem to this map $f_{A_{2}}: E_{0} \rightarrow E_{1}$,

$$
\operatorname{tp}\left(A_{2}\right)\left(f_{A_{2}}\right)=\operatorname{Dual}\left[\overline{A_{2}}\left(f_{A_{2}}\right)\right]
$$

Substitute

$$
c_{2}\left(E_{0}\right)=2 a^{2}, \quad c_{1}\left(f_{A_{2}}\right)=2 a, \quad c_{2}\left(f_{A_{2}}\right)=-2 a^{2}
$$

$$
\begin{aligned}
\operatorname{tp}\left(A_{2}\right)\left(f_{A_{2}}\right) & =A c_{1}^{2}+B c_{2} \\
& =A(2 a)^{2}+B\left(-2 a^{2}\right)=(4 A-2 B) a^{2} \\
\text { Dual }\left[\overline{A_{2}}\left(f_{A_{2}}\right)\right] & =\text { Dual }[\text { Zero }]=c_{2}\left(E_{0}\right)=2 a^{2}
\end{aligned}
$$

Thus we get

$$
2 A-B=1
$$

Localization formula

Do the same thing for other singularities:

$$
\bigcup_{\rho_{0}=\alpha \oplus \beta}^{(x, y)} \xrightarrow{\left(x^{A_{1}}, y\right)} \bigcup_{\rho_{1}=\alpha^{2} \oplus \beta}^{x^{2}} \quad \alpha \in \mathbb{C}^{*}, \beta \in \mathbb{C}^{*}
$$

We obtain a stable map $f_{A_{1}}: E_{0} \rightarrow E_{1}$; It has only A_{1}-singularities, so the A_{2}-singularity locus $A_{2}\left(f_{A_{1}}\right)$ is empty. Thus, Tp Theorem says that

$$
\operatorname{tp}\left(A_{2}\right)\left(f_{A_{1}}\right)=\operatorname{Dual}[\emptyset]=0
$$

Since $c\left(f_{A_{1}}\right)=\frac{(1+2 a)(1+b)}{(1+a)(1+b)}=1+a-a^{2}+\cdots$, one obtains

$$
A-B=0
$$

Localization formula

Do the same thing for other singularities:

$$
\bigcup_{\rho_{0}=\alpha \oplus \beta}^{(x, y)} \xrightarrow{\left(x^{A_{1}}, y\right)}(\underbrace{}_{\rho_{1}=\alpha^{2} \oplus \beta} \quad \alpha \in \mathbb{C}^{*}, \beta \in \mathbb{C}^{*}
$$

We obtain a stable map $f_{A_{1}}: E_{0} \rightarrow E_{1}$; It has only A_{1}-singularities, so the A_{2}-singularity locus $A_{2}\left(f_{A_{1}}\right)$ is empty. Thus, Tp Theorem says that

$$
\operatorname{tp}\left(A_{2}\right)\left(f_{A_{1}}\right)=\operatorname{Dual}[\emptyset]=0
$$

Since $c\left(f_{A_{1}}\right)=\frac{(1+2 a)(1+b)}{(1+a)(1+b)}=1+a-a^{2}+\cdots$, one obtains

$$
A-B=0
$$

Combine it with $2 A-B=1$, gets $A=B=1$, i.e., $\operatorname{tp}\left(A_{2}\right)=c_{1}^{2}+c_{2}$

Localization formula

Remark 3.3

- Rimanyi's restriction method works well for simple orbits in classification up to the lowest codimension of moduli strata of orbits. In fact the restriction of $t p$ to an orbit is the Atiyah-Bott localization for torus action (the origin is a fixed point).

Localization formula

Remark 3.3

- Rimanyi's restriction method works well for simple orbits in classification up to the lowest codimension of moduli strata of orbits. In fact the restriction of $t p$ to an orbit is the Atiyah-Bott localization for torus action (the origin is a fixed point).
- The universal map $f_{\eta}: E_{0} \rightarrow E_{1}$ is a key ingredient in Thom-Pontrjagin-Szücs construction of classifying space of singular maps.

Localization formula

Remark 3.3

- Rimanyi's restriction method works well for simple orbits in classification up to the lowest codimension of moduli strata of orbits. In fact the restriction of $t p$ to an orbit is the Atiyah-Bott localization for torus action (the origin is a fixed point).
- The universal map $f_{\eta}: E_{0} \rightarrow E_{1}$ is a key ingredient in Thom-Pontrjagin-Szücs construction of classifying space of singular maps.
- Why the difference Chern classes $c_{i}(f)=c_{i}\left(f^{*} T N-T M\right)$ arise ? It is that the \mathcal{K}-equivalence admits a stabilization of dimensions: the embedding $J(m, n) \rightarrow J(m+r, n+r), j f(0) \mapsto j\left(f \times i d_{r}\right)(0)$, is transverse to any \mathcal{K}-orbits (not true for \mathcal{A}-orbits).

Tp for \mathcal{A}-finite singularities

What's then about Tp for unstable but \mathcal{A}-finite singularities of maps?

Tp for \mathcal{A}-finite singularities

What's then about Tp for unstable but \mathcal{A}-finite singularities of maps?

It makes sense.
But such a Tp is no longer a polynomial in $c_{i}(f)$ in general and it's for families of maps: a proper setting should be as follows:

Tp for \mathcal{A}-finite singularities

Consider the diagram

where X, Y, B are complex manifolds, $p_{0}: X \rightarrow B$ and $p_{1}: Y \rightarrow B$ are submersions of constant relative dimension, say $\operatorname{dim}=2$.

Tp for \mathcal{A}-finite singularities

Consider the diagram

where X, Y, B are complex manifolds, $p_{0}: X \rightarrow B$ and $p_{1}: Y \rightarrow B$ are submersions of constant relative dimension, say $\operatorname{dim}=2$.
For each $x \in X$, a map-germ of f restricted to the fiber is defined:

$$
\left.\left.f\right|_{p_{0}^{-1}\left(p_{0}(x)\right)}: \mathbb{C}^{2}, 0 \rightarrow \mathbb{C}^{2}, 0 \quad \text { (centered at } x \text { and } f(x)\right)
$$

Tp for \mathcal{A}-finite singularities

Consider the diagram

where X, Y, B are complex manifolds, $p_{0}: X \rightarrow B$ and $p_{1}: Y \rightarrow B$ are submersions of constant relative dimension, say $\operatorname{dim}=2$.
For each $x \in X$, a map-germ of f restricted to the fiber is defined:

$$
\left.\left.f\right|_{p_{0}^{-1}\left(p_{0}(x)\right)}: \mathbb{C}^{2}, 0 \rightarrow \mathbb{C}^{2}, 0 \quad \text { (centered at } x \text { and } f(x)\right)
$$

Given an \mathcal{A}-finite singularity type η, the singularity locus $\eta(f) \subset X$ and the bifurcation locus $B_{\eta}(f)=p_{0}(\eta(f)) \subset B$ are defined.

Tp for \mathcal{A}-finite singularities

Theorem 4.1

Let η be an \mathcal{A}-finite singularity type. For generic maps $f: X \rightarrow Y$, Dual $[\bar{\eta}(f)] \in H^{*}(X)$ is expressed by a universal polynomial $t^{\mathcal{A}}(\eta)$ in the Chern class $c_{i}=c_{i}\left(T_{X / B}\right)$ and $c_{j}=c_{j}\left(T_{Y / B}\right)$ of relative tangent bundles. Dual $\left[\overline{B_{\eta}}(f)\right] \in H^{*}(B)$ is also expressed by the pushforward $p_{0 *} t p^{\mathcal{A}}(\eta)$.

$$
\begin{gathered}
\bar{\eta}(f) \\
p_{0} \downarrow \\
\downarrow \\
\overline{B_{\eta}}(f) \\
\\
p_{0}
\end{gathered}
$$

Tp for \mathcal{A}-finite singularities

Theorem 4.1

Let η be an \mathcal{A}-finite singularity type. For generic maps $f: X \rightarrow Y$, Dual $[\bar{\eta}(f)] \in H^{*}(X)$ is expressed by a universal polynomial $t p^{\mathcal{A}}(\eta)$ in the Chern class $c_{i}=c_{i}\left(T_{X / B}\right)$ and $c_{j}=c_{j}\left(T_{Y / B}\right)$ of relative tangent bundles. Dual $\left[\overline{B_{\eta}}(f)\right] \in H^{*}(B)$ is also expressed by the pushforward $p_{0 *} t p^{\mathcal{A}}(\eta)$.

$$
\begin{gathered}
\bar{\eta}(f) \\
p_{0} \downarrow \\
\downarrow \\
\overline{B_{\eta}}(f) \\
\\
p_{0}
\end{gathered}
$$

Remark 4.2
The case of rel. dim. 1: Kazarian-Lando for the study of Hurwitz numbers.

Tp for \mathcal{A}-finite singularities

\mathcal{A}-classification of $\mathbb{C}^{2}, 0 \rightarrow \mathbb{C}^{2}, 0$ (Rieger-Ruas, Arnold-Platonova)

type	codim	miniversal unfolding
lips(beaks)	3	$\left(x^{3}+x y^{2}+a x, y\right)$
swallowtail	3	$\left(x^{4}+x y+a x^{2}, y\right)$
goose	4	$\left(x^{3}+x y^{3}+a x y+b x, y\right)$
gull	4	$\left(x^{4}+x y^{2}+x^{5}+a x y+b x, y\right)$
butterfly	4	$\left(x^{5}+x y+x^{7}+a x^{3}+b x^{2}, y\right)$
$I_{2,2}^{1,1}$ (dertoid)	4	$\left(x^{2}+y^{3}+a y, y^{2}+x^{3}+b x\right)$

Lips

Tp for \mathcal{A}-finite singularities

Example 4.3 (Ohm)

Tp for \mathcal{A}-classification of map-germs $\mathbb{C}^{2}, 0 \rightarrow \mathbb{C}^{2}, 0$ is defined as

$$
t p^{\mathcal{A}}(\eta) \in \mathbb{Z}\left[c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}\right]
$$

where c_{i}, c_{i}^{\prime} are Chern classes of relative tangent bundles:

lips/beaks	$-2 c_{1}^{3}+5 c_{1}^{2} c_{1}^{\prime}-4 c_{1} c_{1}^{\prime 2}-c_{1} c_{2}+c_{2} c_{1}^{\prime}+c_{1}^{\prime 3}$
swallowtail	$-6 c_{1}^{3}+11 c_{1}^{2} c_{1}^{\prime}-6 c_{1} c_{1}^{\prime 2}+7 c_{1} c_{2}-5 c_{1} c_{2}^{\prime}-5 c_{1}^{\prime} c_{2}+3 c_{1}^{\prime} c_{2}^{\prime}+c_{1}^{\prime 3}$
goose	$\begin{aligned} & 8 c_{1}^{4}-24 c_{1}^{3} c^{\prime}{ }_{1}+26 c_{1}^{2} c^{\prime}{ }_{1}^{2}-12 c_{1}{c^{\prime}}_{1}^{3}+2 c^{\prime{ }_{1}^{4}} \\ & \quad+4 c_{1}^{2} c_{2}-6 c_{1} c^{\prime}{ }_{1} c_{2}+2 c^{\prime \prime}{ }_{1} c_{2} \end{aligned}$
gull	$\begin{aligned} & 6 c_{1}^{4}-17 c_{1}^{3} c^{\prime}{ }_{1}+17 c_{1}^{2} c^{\prime}{ }_{1}^{2}-7 c_{1}{c^{\prime}}_{1}^{3}+{c^{\prime}}^{\prime 4} \\ & \quad-c_{1}^{2} c_{2}+5 c_{1}^{2} c^{\prime}{ }_{2}+c_{1} c^{\prime}{ }_{1} c_{2}-7 c_{1}{c^{\prime}}^{1}{c^{\prime}}^{2}{ }_{2}+2{c^{\prime}}_{1}{ }^{\prime} c^{\prime}{ }_{2}-c_{2}^{2}+{c^{\prime}}^{2}{ }_{2} \end{aligned}$
butterfly	$\begin{aligned} & 24 c_{1}^{4}-50 c_{1}^{3} c^{\prime}{ }_{1}-46 c_{1}^{2} c^{\prime 2}{ }_{1}-10 c_{1}{c^{\prime}}^{\prime 3}{ }_{1}+c^{\prime 4}{ }_{1}-46 c_{1}^{2} c_{2}+6 c_{1}^{2} c^{\prime}{ }_{2} \\ & +60 c_{1} c^{\prime}{ }_{1} c_{2}-20 c_{1} c^{\prime}{ }_{1} c^{\prime}{ }_{2}-20 c^{\prime 2}{ }_{1} c_{2}+6{c^{\prime}}^{2}{ }_{1} c^{\prime}{ }_{2}+3 c_{2}^{2}-3{c^{\prime}}^{2}{ }_{2} \end{aligned}$
$I_{2,2}^{1,1}$	$c_{2}^{2}-c_{1} c_{2} c^{\prime}{ }_{1}+c_{2}{c^{\prime}}_{1}^{2}+c_{1}^{2} c^{\prime}{ }_{2}-2 c_{2} c^{\prime}{ }_{2}-c_{1} c^{\prime}{ }_{1} c^{\prime}{ }_{2}+{c^{\prime}}^{2}{ }_{2}$

Today's summary

Today's summary

- Definition of Thom polynomials of stable singularities: That is a universal expression in terms of $c_{i}=c_{i}\left(f^{*} T N-T M\right)$ s.t.

$$
t p(\eta)(f)=\operatorname{Dual}[\overline{\eta(f)}] \in H^{*}(M)
$$

Today's summary

- Definition of Thom polynomials of stable singularities: That is a universal expression in terms of $c_{i}=c_{i}\left(f^{*} T N-T M\right)$ s.t.

$$
\operatorname{tp}(\eta)(f)=\operatorname{Dual}[\overline{\eta(f)}] \in H^{*}(M)
$$

- Torus action and computation of Tp

Até amanhã．Tchau！

ではまた明日！

