Singularities and Characteristic Classes for Differentiable Maps II

Toru Ohmoto
Hokkaido University

July 25, 2012

Bom dia！おはよう！

Tudo bem ？元気ですか？

Menu

Yesterday: main points were

- Definition of Thom polynomials for mono-singularities
- Torus action and Rimanyi's restriction method

Menu

Yesterday: main points were

- Definition of Thom polynomials for mono-singularities
- Torus action and Rimanyi's restriction method

Today

- Thom polynomials for multi-singularities (M. Kazarian's theory)
- Application: Counting stable singularities
- Higher Tp based on equivariant Chern-SM class theory

Tp for multi-singularities of maps: Kazarian's theory

A multi-singularity is an ordered set $\underline{\eta}:=\left(\eta_{1}, \cdots, \eta_{r}\right)$ of mono-sing.

Tp for multi-singularities of maps: Kazarian's theory

A multi-singularity is an ordered set $\underline{\eta}:=\left(\eta_{1}, \cdots, \eta_{r}\right)$ of mono-sing. e.g., In case of $(m, n)=(3,3)$, there are four non-mono stable types;

$$
A_{1}^{2}:=A_{1} A_{1}, \quad A_{1}^{3}:=A_{1} A_{1} A_{1}, \quad A_{1} A_{2}, \quad A_{2} A_{1}
$$

Tp for multi-singularities of maps: Kazarian's theory

Tp for multi-singularities of maps: Kazarian's theory

For $f: M \rightarrow N$, the multi-singularity loci are defined by

$$
\begin{gathered}
\overline{\eta(f)}:=\overline{\left\{x_{1} \in \eta_{1}(f) \left\lvert\, \begin{array}{c}
\exists x_{2}, \cdots, x_{r} \in M \text { s.t. } x_{i} \neq x_{j}, \\
f \text { at } x_{i} \text { is of type } \eta_{i}(2 \leq i \leq r)
\end{array}\right.\right\}} \begin{array}{c}
\downarrow f
\end{array} \\
\overline{f(\underline{\eta}(f)}):=\overline{\left\{y \in N \left\lvert\, \begin{array}{r}
\exists x_{1}, \cdots, x_{r} \in f^{-1}(y) \text { s.t. } x_{i} \neq x_{j}, \\
f \text { at } x_{j} \text { is of type } \eta_{j}(1 \leq j \leq r)
\end{array}\right.\right\}}
\end{gathered}
$$

Tp for multi-singularities of maps: Kazarian's theory

For $f: M \rightarrow N$, the multi-singularity loci are defined by

$$
\begin{gathered}
\overline{\eta(f)}:=\overline{\left\{x_{1} \in \eta_{1}(f) \left\lvert\, \begin{array}{c}
\exists x_{2}, \cdots, x_{r} \in M \text { s.t. } x_{i} \neq x_{j}, \\
f \text { at } x_{i} \text { is of type } \eta_{i}(2 \leq i \leq r)
\end{array}\right.\right\}} \\
\downarrow f \\
\left.\overline{f(\underline{\eta}(f)}):=\overline{\left\{y \in N \left\lvert\, \begin{array}{r}
\exists x_{1}, \cdots, x_{r} \in f^{-1}(y) \text { s.t. } x_{i} \neq x_{j}, \\
f \text { at } x_{j} \text { is of type } \eta_{j}(1 \leq j \leq r)
\end{array}\right.\right.}\right\}
\end{gathered}
$$

This is a finite-to-one map: let $\operatorname{deg}_{1} \eta$ be the degree

$$
\operatorname{deg}_{1} \underline{\eta}=\text { the number of } \eta_{1} \text { in the tuple } \underline{\eta} .
$$

Remark that $\eta_{2}, \cdots, \eta_{r}$ could be unordered for the above def.

Tp for multi-singularities of maps: Kazarian's theory

Definition 1

The Landweber-Novikov class for $f: M \rightarrow N$ multi-indexed by $I=i_{1} i_{2} \cdots$ is

$$
s_{I}=s_{I}(f)=f_{*}\left(c_{1}(f)^{i_{1}} c_{2}(f)^{i_{2}} \cdots\right) \in H^{*}(N)
$$

where $c_{i}(f)=c_{i}\left(f^{*} T N-T M\right)$.
For simplicity we often denote s_{I} to stand for its pullback $f^{*} s_{I} \in H^{*}(M)$ as well (i.e., omit the letter f^{*}).

$$
\begin{aligned}
& s_{0}=f_{*}(1), \\
& s_{1}=f_{*}\left(c_{1}\right), \\
& s_{2}=f_{*}\left(c_{1}^{2}\right), \\
& s_{3}=s_{*}\left(c_{1}^{3}\right), \\
& s_{01}=f_{*}\left(c_{2}\right), \\
& f_{*}\left(c_{1} c_{2}\right), \quad s_{001}=f_{*}\left(c_{3}\right), \cdots
\end{aligned}
$$

Tp for multi-singularities of maps: Kazarian's theory

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity $\underline{\eta}$ of stable-germs $\mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{m+k}, 0$, there exists a unique polynomial $t p(\underline{\eta})$ in abstract Chern class c_{i} and abstract Landweber-Novikov class s_{I} with rational coefficients, so that

Tp for multi-singularities of maps: Kazarian's theory

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity $\underline{\eta}$ of stable-germs $\mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{m+k}, 0$, there exists a unique polynomial $t p(\underline{\eta})$ in abstract Chern class c_{i} and abstract Landweber-Novikov class s_{I} with rational coefficients, so that for any stable map $f: M \rightarrow N$ of map-codim. k,

- The locus in source is expressed by the polynomial evaluated by

$$
\begin{gathered}
c_{i}=c_{i}(f)=c_{i}\left(f^{*} T N-T M\right) \text { and } s_{I}=s_{I}(f)=f^{*} f_{*}\left(c^{I}(f)\right): \\
t p(\underline{\eta})(f)=\operatorname{Dual}[\underline{\eta}(f)] \in H^{*}(M ; \mathbb{Q})
\end{gathered}
$$

Tp for multi-singularities of maps: Kazarian's theory

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity $\underline{\eta}$ of stable-germs $\mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{m+k}, 0$, there exists a unique polynomial $\operatorname{tp}(\underline{\eta})$ in abstract Chern class c_{i} and abstract Landweber-Novikov class s_{I} with rational coefficients, so that for any stable map $f: M \rightarrow N$ of map-codim. k,

- The locus in source is expressed by the polynomial evaluated by

$$
\begin{gathered}
c_{i}=c_{i}(f)=c_{i}\left(f^{*} T N-T M\right) \text { and } s_{I}=s_{I}(f)=f^{*} f_{*}\left(c^{I}(f)\right): \\
\operatorname{tp}(\underline{\eta})(f)=\operatorname{Dual}[\underline{\eta}(f)] \in H^{*}(M ; \mathbb{Q})
\end{gathered}
$$

- The locus in target is expressed by a universal polynomial in $s_{I}(f)$

$$
\left.\operatorname{tp}_{\text {target }}(\underline{\eta})(f):=\frac{1}{\operatorname{deg}_{1} \underline{\eta}} f_{*} \operatorname{tp}(\underline{\eta})=\operatorname{Dual}[\overline{f(\underline{\eta}(f)})\right] \in H^{*}(N ; \mathbb{Q})
$$

Tp for multi-singularities of maps: Kazarian's theory

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity $\underline{\eta}$ of stable-germs $\mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{m+k}, 0$, there exists a unique polynomial $t p(\underline{\eta})$ in abstract Chern class c_{i} and abstract Landweber-Novikov class s_{I} with rational coefficients, so that for any stable map $f: M \rightarrow N$ of map-codim. k,

- The locus in source is expressed by the polynomial evaluated by

$$
\begin{gathered}
c_{i}=c_{i}(f)=c_{i}\left(f^{*} T N-T M\right) \text { and } s_{I}=s_{I}(f)=f^{*} f_{*}\left(c^{I}(f)\right): \\
t p(\underline{\eta})(f)=\operatorname{Dual}[\underline{\eta}(f)] \in H^{*}(M ; \mathbb{Q})
\end{gathered}
$$

- The locus in target is expressed by a universal polynomial in $s_{I}(f)$

$$
\left.\operatorname{tp}_{\text {target }}(\underline{\eta})(f):=\frac{1}{\operatorname{deg}_{1} \underline{\eta}} f_{*} \operatorname{tp}(\underline{\eta})=\operatorname{Dual}[\overline{f(\underline{\eta}(f)})\right] \in H^{*}(N ; \mathbb{Q})
$$

We call $t p(\underline{\eta})$ the Thom polynomial of stable multi-singularity type $\underline{\eta}$

Tp for multi-singularities of maps: Kazarian's theory

Example 0.2

Tp for multi-singularities of stable maps $M^{n} \rightarrow N^{n}$ up to codim 3 are

type	codim	$t p$
A_{1}	1	c_{1}
A_{2}	2	$c_{1}^{2}+c_{2}$
$A_{1} A_{1}$	2	$c_{1} s_{1}-4 c_{1}^{2}-2 c_{2}$
A_{3}	3	$c_{1}^{3}+3 c_{1} c_{2}+2 c_{3}$
$A_{1} A_{1} A_{1}$	3	$\frac{1}{2}\left(c_{1} s_{1}^{2}-4 c_{2} s_{1}-4 c_{1} s_{2}-2 c_{1} s_{01}-8 c_{1}^{2} s_{1}\right.$
$A_{1} A_{2}$	3	$\left.+40 c_{1}^{3}+56 c_{1} c_{2}+24 c_{3}\right)$
$A_{2} A_{1}$	3	$c_{1} s_{2}+c_{1} s_{01}-6 c_{1}^{3}-12 c_{1} c_{2}-6 c_{3}$

Tp for multi-singularities of maps: Kazarian's theory

Remark 0.3

- Kazarian's proof relies on the topology of the classifying space of complex cobordisms $\Omega^{2 \infty} M U(\infty+k)$. There has not yet appeared algebro-geometric proof so far -

Tp for multi-singularities of maps: Kazarian's theory

Remark 0.3

- Kazarian's proof relies on the topology of the classifying space of complex cobordisms $\Omega^{2 \infty} M U(\infty+k)$. There has not yet appeared algebro-geometric proof so far -
In fact, this theorem touches deep enumerative problems in algebraic geometry, e.g.
Göttsche conj. (thm) counting nodal curves on a surface, Kontsevich's formula counting rational plane curves, ...

Tp for multi-singularities of maps: Kazarian's theory

Remark 0.3

- Kazarian's proof relies on the topology of the classifying space of complex cobordisms $\Omega^{2 \infty} M U(\infty+k)$. There has not yet appeared algebro-geometric proof so far -
In fact, this theorem touches deep enumerative problems in algebraic geometry, e.g.
Göttsche conj. (thm) counting nodal curves on a surface, Kontsevich's formula counting rational plane curves, ...
- To compute Tp for stable multi-singularities, Rimanyi's restiction method fits very well.

Application: Counting stable singularities

Here we give an application of Tp theory.

Application: Counting stable singularities

Here we give an application of Tp theory.

Given a finitely determined map-germ $f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$, and a stable (mono/multi-)singularity type η of codimension n in the target. Take a stable perturbation

$$
f_{t}: U \rightarrow \mathbb{C}^{n} \quad\left(t \in \Delta \subset \mathbb{C}, 0 \in U \subset \mathbb{C}^{m}\right)
$$

so that f_{0} is a representative of f and f_{t} for $t \neq 0$ is a stable map. Then the number of $\eta\left(f_{t}\right)$ is an invariant of the original germ f.

Application: Counting stable singularities

Here we give an application of Tp theory.

Given a finitely determined map-germ $f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$, and a stable (mono/multi-)singularity type η of codimension n in the target. Take a stable perturbation

$$
f_{t}: U \rightarrow \mathbb{C}^{n} \quad\left(t \in \Delta \subset \mathbb{C}, 0 \in U \subset \mathbb{C}^{m}\right)
$$

so that f_{0} is a representative of f and f_{t} for $t \neq 0$ is a stable map.
Then the number of $\eta\left(f_{t}\right)$ is an invariant of the original germ f. Ex:
$(m, 1): \sharp$ Morse sing. $\left(A_{1}\right) \Rightarrow$ Milnor number μ.
$(2,2): \sharp$ Cusp/Double folds \Rightarrow Fukuda-Ishikawa, Gaffney-Mond $m, n \leq 8: \sharp$ TB singularities \Rightarrow Ballesteros-Fukui-Saia \ldots

Application: Counting stable singularities

Here we give an application of Tp theory.

Given a finitely determined map-germ $f: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$, and a stable (mono/multi-)singularity type η of codimension n in the target. Take a stable perturbation

$$
f_{t}: U \rightarrow \mathbb{C}^{n} \quad\left(t \in \Delta \subset \mathbb{C}, 0 \in U \subset \mathbb{C}^{m}\right)
$$

so that f_{0} is a representative of f and f_{t} for $t \neq 0$ is a stable map.
Then the number of $\eta\left(f_{t}\right)$ is an invariant of the original germ f. Ex:
$(m, 1): \sharp$ Morse sing. $\left(A_{1}\right) \Rightarrow$ Milnor number μ.
$(2,2): \sharp$ Cusp/Double folds \Rightarrow Fukuda-Ishikawa, Gaffney-Mond $m, n \leq 8: \sharp$ TB singularities \Rightarrow Ballesteros-Fukui-Saia ...
USP-ICMC is the most important place about this theme!

Application: Counting stable singularities

Restrict our attention to the case of weighted homogeneous map-germs.

Application: Counting stable singularities

Restrict our attention to the case of weighted homogeneous map-germs.
Let $f=\left(f_{1}, \cdots, f_{n}\right): \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$ be w. h. germs with weights w_{1}, \cdots, w_{m} and degrees d_{1}, \cdots, d_{n}, i.e.,

$$
f\left(\alpha^{w_{1}} x_{1}, \cdots, \alpha^{w_{m}} x_{m}\right)=\left(\alpha^{d_{1}} f_{1}(\boldsymbol{x}), \cdots, \alpha^{d_{n}} f_{n}(\boldsymbol{x})\right) \quad\left(\forall \alpha \in \mathbb{C}^{*}\right)
$$

Application: Counting stable singularities

Restrict our attention to the case of weighted homogeneous map-germs.
Let $f=\left(f_{1}, \cdots, f_{n}\right): \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$ be w. h. germs with weights w_{1}, \cdots, w_{m} and degrees d_{1}, \cdots, d_{n}, i.e.,

$$
f\left(\alpha^{w_{1}} x_{1}, \cdots, \alpha^{w_{m}} x_{m}\right)=\left(\alpha^{d_{1}} f_{1}(\boldsymbol{x}), \cdots, \alpha^{d_{n}} f_{n}(\boldsymbol{x})\right) \quad\left(\forall \alpha \in \mathbb{C}^{*}\right)
$$

Suppose f is finitely determined

Given a stable mono/multi-singularity $\underline{\eta}$ of codimension n in the target.

Application: Counting stable singularities

Take a stable unfolding F of f : Suppose that unfolding parameters have weights r_{1}, \cdots, r_{k}.

$$
\begin{array}{rllll}
\mathbb{C}^{m} & \xrightarrow{f} & \mathbb{C}^{n} \\
& i_{0} \downarrow & & & \\
\underline{\eta}(F) \subset & \mathbb{C}^{m+k} & \xrightarrow{F} & \mathbb{C}^{n+k} & \supset F(\underline{\eta}(F))
\end{array}
$$

Application: Counting stable singularities

Take a stable unfolding F of f : Suppose that unfolding parameters have weights r_{1}, \cdots, r_{k}.

$$
\begin{array}{rllll}
\mathbb{C}^{m} & \xrightarrow{f} & \mathbb{C}^{n} \\
i_{0} \downarrow & & & \\
\underline{\eta}(F) \subset \iota_{0} & \\
\mathbb{C}^{m+k} & \xrightarrow{F} & \mathbb{C}^{n+k} & \supset F(\underline{\eta}(F))
\end{array}
$$

Take a generic (non-equivariant) section ι_{t} close to ι_{0} so that ι_{t} is transverse to the critical value set of F, then it induces a stable perturbation f_{t} of the original map $f_{0}=f$.

Application: Counting stable singularities

Take the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^{N}}(1)$ over $\mathbb{P}^{N}(N \gg 0)$ and define

$$
\begin{array}{ccccc}
\oplus_{i=1}^{m} \mathcal{O}_{\mathbb{P}^{N}}\left(w_{i}\right)=: & E_{0} & \xrightarrow{f_{0}} \quad E_{1} & :=\oplus_{j=1}^{m} \mathcal{O}_{\mathbb{P}^{N}}\left(d_{j}\right) \\
i_{0} \downarrow & & \downarrow \iota_{0} & \\
\underline{\eta}(F) \subset & E_{0} \oplus E^{\prime} & \xrightarrow{F} & E_{1} \oplus E^{\prime} & \supset F(\underline{\eta}(F))
\end{array}
$$

where $E^{\prime}=\oplus_{i=1}^{k} \mathcal{O}_{\mathbb{P}^{N}}\left(r_{i}\right)$ corresponding to unfolding parameters.

Application: Counting stable singularities

Take the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^{N}}(1)$ over $\mathbb{P}^{N}(N \gg 0)$ and define

$$
\begin{array}{ccccc}
\oplus_{i=1}^{m} \mathcal{O}_{\mathbb{P}^{N}}\left(w_{i}\right)=: & E_{0} & \xrightarrow{f_{0}} \quad E_{1} & :=\oplus_{j=1}^{m} \mathcal{O}_{\mathbb{P}^{N}}\left(d_{j}\right) \\
i_{t} \downarrow & & \downarrow \iota_{t} & \\
\underline{\eta}(F) \subset & E_{0} \oplus E^{\prime} & \xrightarrow{F} & E_{1} \oplus E^{\prime} & \supset F(\underline{\eta}(F))
\end{array}
$$

where $E^{\prime}=\oplus_{i=1}^{k} \mathcal{O}_{\mathbb{P}^{N}}\left(r_{i}\right)$ corresponding to unfolding parameters.
Perturb the embedding ι_{0} to yield a (non-equivariant) stable perturbation $f_{t}: E_{0} \rightarrow E_{1}$ of the original map $f_{0}=f_{\eta}$.

Application: Counting stable singularities

Application: Counting stable singularities

Application: Counting stable singularities

Put $a=c_{1}(\ell)$. In the total space $H^{*}\left(E_{1} \oplus E^{\prime} ; \mathbb{Q}\right) \stackrel{p^{*}}{\sim} H^{*}\left(\mathbb{P}^{\infty} ; \mathbb{Q}\right)=\mathbb{Q}[a]$,

Application: Counting stable singularities

Put $a=c_{1}(\ell)$. In the total space $H^{*}\left(E_{1} \oplus E^{\prime} ; \mathbb{Q}\right) \stackrel{p^{*}}{\sim} H^{*}\left(\mathbb{P}^{\infty} ; \mathbb{Q}\right)=\mathbb{Q}[a]$,

$$
\begin{gathered}
{[\overline{F(\underline{\eta}(F))}]=t p_{\text {target }}(\underline{\eta})(F)={ }^{\exists} h \cdot a^{n},} \\
{\left[E_{1}\right]=c_{t o p}\left(p^{*} E^{\prime}\right)=r_{1} \cdots r_{k} \cdot a^{k} .}
\end{gathered}
$$

Application: Counting stable singularities

Put $a=c_{1}(\ell)$. In the total space $H^{*}\left(E_{1} \oplus E^{\prime} ; \mathbb{Q}\right) \stackrel{p^{*}}{\simeq} H^{*}\left(\mathbb{P}^{\infty} ; \mathbb{Q}\right)=\mathbb{Q}[a]$,

$$
\begin{gathered}
{[\overline{F(\underline{\eta}(F))}]=t p_{\mathrm{target}}(\underline{\eta})(F)={ }^{\exists} h \cdot a^{n}} \\
{\left[E_{1}\right]=c_{t o p}\left(p^{*} E^{\prime}\right)=r_{1} \cdots r_{k} \cdot a^{k}}
\end{gathered}
$$

$$
\sharp \underline{\eta}\left(f_{t}\right)=\frac{t p_{\text {target }}(\underline{\eta}) \cdot\left[E_{1}\right]}{c_{\text {top }}\left(E_{1} \oplus E^{\prime}\right)}=\frac{h \cdot r_{1} \cdots r_{k}}{d_{1} \cdots d_{n} \cdot r_{1} \cdots r_{k}}=\frac{h}{d_{1} \cdots d_{n}}
$$

Application: Counting stable singularities

Theorem 0.4 (Ohm)

Given a stable mono/multi-singularity $\underline{\eta}$ of codimension n in target. Then, the 0 -stable invariant of a finitely determined w. h. germ $\mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$ is computed by

$$
\sharp \underline{\eta}\left(f_{t}\right)=\frac{f_{*} t p(\underline{\eta})\left(f_{0}\right)}{\operatorname{deg}_{1} \underline{\eta} \cdot d_{1} \cdots d_{n}}=\frac{t p(\underline{\eta})\left(f_{0}\right)}{\operatorname{deg}_{1} \underline{\eta} \cdot w_{1} \cdots w_{m}}
$$

Application: Counting stable singularities

Theorem 0.4 (Ohm)

Given a stable mono/multi-singularity $\underline{\eta}$ of codimension n in target. Then, the 0 -stable invariant of a finitely determined w. h. germ $\mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$ is computed by

$$
\sharp \underline{\eta}\left(f_{t}\right)=\frac{f_{*} t p(\underline{\eta})\left(f_{0}\right)}{\operatorname{deg}_{1} \underline{\eta} \cdot d_{1} \cdots d_{n}}=\frac{t p(\underline{\eta})\left(f_{0}\right)}{\operatorname{deg}_{1} \underline{\eta} \cdot w_{1} \cdots w_{m}}
$$

For our universal map f_{0} and stable map F
$c(F)=c\left(f_{0}\right)=1+c_{1}\left(f_{0}\right)+c_{2}\left(f_{0}\right)+\cdots=\frac{\prod\left(1+d_{j}\right)}{\prod\left(1+w_{i}\right)}$ and $s_{0}\left(f_{0}\right)=\frac{d_{1} \cdots d_{n}}{w_{1} \cdots w_{m}}$ and $s_{I}\left(f_{0}\right)=c^{I}\left(f_{0}\right) s_{0}\left(f_{0}\right)$.
Thus the polynomial $t p(\underline{\eta})$ in $c_{i}=c_{i}\left(f_{0}\right)$ and $s_{I}=s_{I}\left(f_{0}\right)$ is written in terms of w_{i} and d_{j}.

Application: Counting stable singularities

$(m, n)=(2,2):$ Tp of stable singularities of codim 2 are

$$
\operatorname{tp}\left(A_{2}\right)=c_{1}^{2}+c_{2}, \quad \operatorname{tp}\left(A_{1}^{2}\right)=c_{1} s_{1}-4 c_{1}^{2}-2 c_{2}
$$

Application: Counting stable singularities

$(m, n)=(2,2):$ Tp of stable singularities of codim 2 are

$$
\operatorname{tp}\left(A_{2}\right)=c_{1}^{2}+c_{2}, \quad \operatorname{tp}\left(A_{1}^{2}\right)=c_{1} s_{1}-4 c_{1}^{2}-2 c_{2}
$$

```
ln[7]:= AC := Simplify[Expand[w1^{-1} w2^{-1} (c1^^2 + c2)]]; AC
Out[7]={\frac{d\mp@subsup{1}{}{2}+d\mp@subsup{2}{}{2}+2w\mp@subsup{1}{}{2}+3d1(d2-w1-w2)+3w1 w2+2w\mp@subsup{2}{}{2}-3d2(w1+w2)}{w1w2}}
    A:=Simplify[Expand[1/2 d1^{-1} d2^{-1}((dc1)^2 - 4dc1^2 - 2dc2)]];A
    {\frac{1}{2w\mp@subsup{1}{}{2}w\mp@subsup{2}{}{2}}(\textrm{d}\mp@subsup{1}{}{3}\textrm{d}2-
        2 w1 w2 (2 d2 2 + 3 w1 ' + 5 w1 w2 + 3 w2 2 - 5 d2 (w1 + w2)) + 2 d1 ' (d2 2 - 2 w1 w2 - d2 (w1 + w2)) +
        d1 (d2 ' - 2 d2 2 (w1 + w2) + 10 w1 w2 (w1 + w2) + d2 (w1 2 - 8w1 w2 + w2 2})))
```


Application: Counting stable singularities

$(m, n)=(2,2):$ Tp of stable singularities of codim 2 are

$$
\operatorname{tp}\left(A_{2}\right)=c_{1}^{2}+c_{2}, \quad \operatorname{tp}\left(A_{1}^{2}\right)=c_{1} s_{1}-4 c_{1}^{2}-2 c_{2}
$$

```
\(\ln [7]=A C:=S i m p l i f y\left[E x p a n d\left[w 1^{\wedge}\{-1\}\right.\right.\) w \(\left.\left.^{\wedge}\{-1\}\left(c 1^{\wedge} 2+c 2\right)\right]\right] ; A C\)
Out [7] \(=\left\{\frac{d 1^{2}+d 2^{2}+2 w 1^{2}+3 d 1(d 2-w 1-w 2)+3 w 1 w 2+2 w 2^{2}-3 d 2(w 1+w 2)}{w 1 w 2}\right\}\)
    \(A:=S i m p l i f y\left[E x p a n d\left[1 / 2 d 1^{\wedge}\{-1\} d 2 \wedge\{-1\}\left((d c 1)^{\wedge} 2-4 d c 1^{\wedge} 2-2 d c 2\right)\right]\right]\); \(A\)
    \(\left\{\frac{1}{2 w 1^{2} w 2^{2}}\left(\mathrm{~d} 1^{3} \mathrm{~d} 2-\right.\right.\)
        \(2 \mathrm{w} 1 \mathrm{w} 2\left(2 \mathrm{~d} 2^{2}+3 \mathrm{w}^{2}+5 \mathrm{w} 1 \mathrm{w} 2+3 \mathrm{w}^{2}-5 \mathrm{~d} 2(\mathrm{w} 1+\mathrm{w} 2)\right)+2 \mathrm{~d} 1^{2}\left(\mathrm{~d} 2^{2}-2 \mathrm{w} 1 \mathrm{w} 2-\mathrm{d} 2(\mathrm{w} 1+\mathrm{w} 2)\right)+\)
        \(\left.\left.d 1\left(d 2^{3}-2 d 2^{2}(w 1+w 2)+10 w 1 w 2(w 1+w 2)+d 2\left(w 1^{2}-8 w 1 w 2+w 2^{2}\right)\right)\right)\right\}\)
```

This coincides with Gaffney-Mond's computation (1991).

Application: Counting stable singularities

$(m, n)=(2,3):$ Tp of stable singularities of codim 2 in source are

$$
\operatorname{tp}\left(A_{1}\right)=c_{2}, \quad t p\left(A_{1}^{3}\right)=\frac{1}{2}\left(s_{0}^{2}-s_{1}-2 c_{1} s_{0}+2 c_{1}^{2}+2 c_{2}\right)
$$

Application: Counting stable singularities

$(m, n)=(2,3):$ Tp of stable singularities of codim 2 in source are

$$
\operatorname{tp}\left(A_{1}\right)=c_{2}, \quad \operatorname{tp}\left(A_{1}^{3}\right)=\frac{1}{2}\left(s_{0}^{2}-s_{1}-2 c_{1} s_{0}+2 c_{1}^{2}+2 c_{2}\right)
$$

```
TpA1 := Simplify[Expand[w1^\{-1\} w2^\{-1\} c2]]; TPA1
    \(\left\{\frac{-\mathrm{d} 3 \mathrm{w} 1+\mathrm{w} 1^{2}+\mathrm{d} 2(\mathrm{~d} 3-\mathrm{w} 1-\mathrm{w} 2)+\mathrm{d} 1(\mathrm{~d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2)-\mathrm{d} 3 \mathrm{w} 2+\mathrm{w} 1 \mathrm{w} 2+\mathrm{w} 2^{2}}{\mathrm{w} 1 \mathrm{w} 2}\right\}\)
TpA111 := Simplify [
    Expand \(\left.\left[1 / 6 d 1^{\wedge}\{-1\} d 2^{\wedge}\{-1\} d 3^{\wedge}\{-1\}\left(d^{\wedge} 3-3 d(d c 1)+2 d(c 1)^{\wedge} 2+2 d c 2\right)\right]\right] ; T p A 111\)
    \(\left\{\frac{1}{6 \mathrm{w} 1^{3} w 2^{3}}\left(\mathrm{~d} 1^{2}\left(\mathrm{~d} 2^{2} \mathrm{~d} 3^{2}-3 \mathrm{~d} 2 \mathrm{~d} 3 \mathrm{w} 1 \mathrm{w} 2+2 \mathrm{w} 1^{2} \mathrm{w} 2^{2}\right)+\right.\right.\)
    \(2 \mathrm{w} 1^{2} \mathrm{w} 2^{2}\left(\mathrm{~d} 2^{2}+\mathrm{d} 3^{2}+2 \mathrm{w} 1^{2}+3 \mathrm{~d} 2(\mathrm{~d} 3-\mathrm{w} 1-\mathrm{w} 2)+3 \mathrm{w} 1 \mathrm{w} 2+2 \mathrm{w} 2^{2}-3 \mathrm{~d} 3(\mathrm{w} 1+\mathrm{w} 2)\right)-\)
    \(\left.\left.3 d 1 \mathrm{w} 1 \mathrm{w} 2\left(\mathrm{~d} 2^{2} \mathrm{~d} 3+2 \mathrm{w} 1 \mathrm{w} 2(-\mathrm{d} 3+\mathrm{w} 1+\mathrm{w} 2)+\mathrm{d} 2\left(\mathrm{~d} 3^{2}-2 \mathrm{w} 1 \mathrm{w} 2-\mathrm{d} 3(\mathrm{w} 1+\mathrm{w} 2)\right)\right)\right)\right\}\)
```


Application: Counting stable singularities

$(m, n)=(2,3):$ Tp of stable singularities of codim 2 in source are

$$
t p\left(A_{1}\right)=c_{2}, \quad t p\left(A_{1}^{3}\right)=\frac{1}{2}\left(s_{0}^{2}-s_{1}-2 c_{1} s_{0}+2 c_{1}^{2}+2 c_{2}\right)
$$

```
TpA1 := Simplify[Expand[w1^\{-1\} w2^\{-1\} c2]]; TPA1
    \(\left\{\frac{-\mathrm{d} 3 \mathrm{w} 1+\mathrm{w} 1^{2}+\mathrm{d} 2(\mathrm{~d} 3-\mathrm{w} 1-\mathrm{w} 2)+\mathrm{d} 1(\mathrm{~d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2)-\mathrm{d} 3 \mathrm{w} 2+\mathrm{w} 1 \mathrm{w} 2+\mathrm{w} 2^{2}}{\mathrm{w} 1 \mathrm{w} 2}\right\}\)
TpA111: = Simplify
    Expand \(\left.\left[1 / 6 d 1^{\wedge}\{-1\} d 2 \wedge\{-1\} d 3^{\wedge}\{-1\}\left(d^{\wedge} 3-3 d(d c 1)+2 d(c 1)^{\wedge} 2+2 d c 2\right)\right]\right] ; T p A 111\)
    \(\left\{\frac{1}{6 w 1^{3} w 2^{3}}\left(d 1^{2}\left(d 2^{2} d 3^{2}-3 d 2 d 3 w 1 w 2+2 w 1^{2} w 2^{2}\right)+\right.\right.\)
    \(2 \mathrm{w} 1^{2} \mathrm{w} 2^{2}\left(\mathrm{~d} 2^{2}+\mathrm{d} 3^{2}+2 \mathrm{w} 1^{2}+3 \mathrm{~d} 2(\mathrm{~d} 3-\mathrm{w} 1-\mathrm{w} 2)+3 \mathrm{w} 1 \mathrm{w} 2+2 \mathrm{w} 2^{2}-3 \mathrm{~d} 3(\mathrm{w} 1+\mathrm{w} 2)\right)-\)
    \(\left.\left.3 d 1 w 1 w 2\left(d 2^{2} d 3+2 w 1 w 2(-d 3+w 1+w 2)+d 2\left(d 3^{2}-2 w 1 w 2-d 3(w 1+w 2)\right)\right)\right)\right\}\)
```

This coincides with Mond's computation (1991).

Application: Counting stable singularities

$$
\begin{aligned}
& (m, n)=(3,3): \text { Tp for } A_{3}=c_{1}^{3}+3 c_{1} c_{2}+2 c_{3} \\
& \ln [36]:=t p A 3:=\mathbf{c} 1^{\wedge} 3+3 \mathbf{c} 1 \mathbf{c} 2+2 \mathbf{c} 3 \text {; } \\
& \mathrm{tpA} 3 /\{\mathrm{w} 1 \mathrm{w} 2 \mathrm{w} 3\} / \cdot\{\mathrm{c} 1 \rightarrow \mathrm{a} 1, \mathrm{c} 2 \rightarrow \mathrm{a} 2, \mathrm{c} 3 \rightarrow \mathrm{a} 3\} \\
& \text { Out[37] }=\left\{\frac { 1 } { \mathrm { w } 1 \mathrm { w } 2 \mathrm { w } 3 } \left((\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2-\mathrm{w} 3)^{3}+\right.\right. \\
& 3(\mathrm{~d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2-\mathrm{w} 3)(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+ \\
& \left.\mathrm{w} 1^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2+\mathrm{w} 2^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2) \mathrm{w} 3+\mathrm{w} 3^{2}\right)+ \\
& 2\left(d 1 d 2 d 3-(d 2 d 3+d 1(d 2+d 3)) w 1+(d 1+d 2+d 3) w 1^{2}-w 1^{3}-\right. \\
& \left(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+\mathrm{w} 1^{2}\right) \mathrm{w} 2+(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2^{2}-\mathrm{w} 2^{3}- \\
& \left(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+\mathrm{w} 1^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2+\mathrm{w} 2^{2}\right) \mathrm{w} 3+ \\
& \left.\left.\left.(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2) \mathrm{w} 3^{2}-\mathrm{w} 3^{3}\right)\right)\right\}
\end{aligned}
$$

$\ln [38]:=$ Factor[Simplify[\% /. \{d1 \rightarrow w1, d2 \rightarrow w2, d3 \rightarrow d, w3 \rightarrow w0 \}]] //Simplify
Out [38] $=\left\{\frac{(\mathrm{d}-3 \mathrm{w} 0)(\mathrm{d}-2 \mathrm{w} 0)(\mathrm{d}-\mathrm{w} 0)}{\mathrm{w} 0 \mathrm{w} 1 \mathrm{w} 2}\right\}$

Our formula is valid for any corank. In case of corank one it coincides with Marar-Montaldi-Ruas.

Application: Counting stable singularities

$$
(m, n)=(3,3): \text { Tp for } A_{1}^{3}
$$

```
\(\ln [40]:=\) A1A1A1 :=Simplify \([\)
            \(1 / 6\left(40 c 1^{3}+56 c 1 c 2+24 c 3-2 c 1 s 01-8 c 1^{2} s 1-4 c 2 s 1+c 1 s 1^{2}-4 c 1 s 2\right)(w 1 \mathrm{w} 2 \mathrm{w} 3)^{\wedge}\{-1\} /\).
            \(\{\mathrm{c} 1 \rightarrow \mathrm{a} 1, \mathrm{c} 2 \rightarrow \mathrm{a} 2, \mathrm{c} 3 \rightarrow \mathrm{a} 3, \mathrm{~s} 0 \rightarrow \mathrm{sa0}, \mathrm{~s} 1 \rightarrow \mathrm{sa}, \mathrm{s} 01 \rightarrow \mathrm{sa} 01\),
            \(\mathrm{s} 2 \rightarrow \mathrm{sa2}, \mathrm{~s} 3 \rightarrow \mathrm{sa} 3, \mathrm{~s} 11 \rightarrow \mathrm{sa} 11, \mathrm{~s} 001 \rightarrow \mathrm{sa001}\}] ;\) A1A1A1
Out[40] \(=\left\{\left\{\frac{1}{6 \mathrm{w} 1 \mathrm{w} 2 \mathrm{w} 3}\left(40(\mathrm{~d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2-\mathrm{w} 3)^{3}+\right.\right.\right.\)
            \(\frac{d 1^{2} d 2^{2} d 3^{2}(d 1+d 2+d 3-w 1-w 2-w 3)^{3}}{w 1^{2} w 2^{2} w 3^{2}}-\frac{12 d 1 d 2 d 3(d 1+d 2+d 3-w 1-w 2-w 3)^{3}}{w 1 w 2 w 3}+\)
\(56(d 1+d 2+d 3-w 1-w 2-w 3)\left(d 1 d 2+(d 1+d 2) d 3-(d 1+d 2+d 3) w 1+w 1^{2}-\right.\)
        \(56(\mathrm{~d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2-\mathrm{w} 3)\left(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+\mathrm{w} 1^{2}-\right.\)
            \(\left.(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2+\mathrm{w} 2^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2) \mathrm{w} 3+\mathrm{w} 3^{2}\right)-\frac{1}{\mathrm{w} 1 \mathrm{w} 2 \mathrm{w} 3}\)
        \(6 \mathrm{~d} 1 \mathrm{~d} 2 \mathrm{~d} 3(\mathrm{~d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2-\mathrm{w} 3)(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+\)
            \(\left.\mathrm{w} 1^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2+\mathrm{w} 2^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2) \mathrm{w} 3+\mathrm{w} 3^{2}\right)+\)
            \(24\left(\mathrm{~d} 1 \mathrm{~d} 2 \mathrm{~d} 3-(\mathrm{d} 2 \mathrm{~d} 3+\mathrm{d} 1(\mathrm{~d} 2+\mathrm{d} 3)) \mathrm{w} 1+(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1^{2}-\mathrm{w} 1^{3}-\right.\)
                \(\left(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+\mathrm{w} 1^{2}\right) \mathrm{w} 2+(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2^{2}-\mathrm{w} 2^{3}-\)
            \(\left(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+\mathrm{w} 1^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2+\mathrm{w} 2^{2}\right) \mathrm{w} 3+\)
            \(\left.\left.\left.\left.(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2) \mathrm{w} 3^{2}-\mathrm{w} 3^{3}\right)\right)\right\}\right\}\)
\(\ln [41]:=\) Factor[Simplify[\% /. \{d1 \(\rightarrow\) w1, d2 \(\rightarrow\) w2, d3 \(\rightarrow\) d, w3 \(\rightarrow\) w0 \(\}\) ] ] // Simplify
Out[41] \(=\left\{\left\{\frac{(\mathrm{d}-5 \mathrm{w} 0)(\mathrm{d}-4 \mathrm{w} 0)(\mathrm{d}-3 \mathrm{w} 0)(\mathrm{d}-2 \mathrm{w} 0)(\mathrm{d}-\mathrm{w} 0)}{6 \mathrm{w}^{3} \mathrm{w} 1 \mathrm{w} 2}\right\}\right\}\)
```


Application: Counting stable singularities

$$
(m, n)=(3,3): \text { Tp for } A_{1} A_{2}
$$

$$
\begin{aligned}
& \ln [42]:=\text { A1A2 := Simplify }[\\
& \text { (s2c1 + s01 c1-6c1^3-12c1 c2-6c3) (w1 w2 w3) ^ \{-1\} /. } \\
& \{\mathrm{c} 1 \rightarrow \mathrm{a} 1, \mathrm{c} 2 \rightarrow \mathrm{a} 2, \mathrm{c} 3 \rightarrow \mathrm{a} 3, \mathrm{~s} 0 \rightarrow \mathrm{sa0}, \mathrm{~s} 1 \rightarrow \mathrm{sa1}, \mathrm{~s} 01 \rightarrow \mathrm{sa01}, \\
& \text { s2 } \rightarrow \text { sa2, s3 } \rightarrow \text { sa3, s11 } \rightarrow \text { sa11, s001 } \rightarrow \text { sa001\}]; A1A2 } \\
& \text { Out[42] }=\left\{\left\{\frac { 1 } { w 1 w 2 w 3 } \left(-6(d 1+d 2+d 3-w 1-w 2-w 3)^{3}+\frac{d 1 d 2 d 3(d 1+d 2+d 3-w 1-w 2-w 3)^{3}}{w 1 w 2 w 3}-\right.\right.\right. \\
& 12(\mathrm{~d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2-\mathrm{w} 3)\left(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+\mathrm{w} 1^{2}-\right. \\
& \left.(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2+\mathrm{w} 2^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2) \mathrm{w} 3+\mathrm{w} 3^{2}\right)+\frac{1}{\mathrm{w} 1 \mathrm{w} 2 \mathrm{w} 3} \\
& \mathrm{~d} 1 \mathrm{~d} 2 \mathrm{~d} 3(\mathrm{~d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2-\mathrm{w} 3)(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+ \\
& \left.\mathrm{w} 1^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2+\mathrm{w} 2^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2) \mathrm{w} 3+\mathrm{w} 3^{2}\right)- \\
& 6\left(\mathrm{~d} 1 \mathrm{~d} 2 \mathrm{~d} 3-(\mathrm{d} 2 \mathrm{~d} 3+\mathrm{d} 1(\mathrm{~d} 2+\mathrm{d} 3)) \mathrm{w} 1+(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1^{2}-\mathrm{w} 1^{3}-\right. \\
& \left(d 1 d 2+(d 1+d 2) d 3-(d 1+d 2+d 3) w 1+w 1^{2}\right) w 2+(d 1+d 2+d 3-w 1) w 2^{2}-w 2^{3}- \\
& \left(\mathrm{d} 1 \mathrm{~d} 2+(\mathrm{d} 1+\mathrm{d} 2) \mathrm{d} 3-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3) \mathrm{w} 1+\mathrm{w} 1^{2}-(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1) \mathrm{w} 2+\mathrm{w} 2^{2}\right) \mathrm{w} 3+ \\
& \left.\left.\left.\left.(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3-\mathrm{w} 1-\mathrm{w} 2) \mathrm{w} 3^{2}-\mathrm{w} 3^{3}\right)\right)\right\}\right\}
\end{aligned}
$$

$\ln [43]:=$ Factor[Simplify[Simplify[\% /. \{d1 \rightarrow w1, d2 \rightarrow w2, d3 \rightarrow d, w3 \rightarrow w0\}]]]//Simplify
Out[43] $=\left\{\left\{\frac{(\mathrm{d}-4 \mathrm{w} 0)(\mathrm{d}-3 \mathrm{w} 0)(\mathrm{d}-2 \mathrm{w} 0)(\mathrm{d}-\mathrm{w} 0)}{\mathrm{w}^{2} \mathrm{w} 1 \mathrm{w} 2}\right\}\right\}$

Tp for Morin maps: Porteous, Levine, Ando

Let us switch to the next theme: "Higher Tp"

Tp for Morin maps: Porteous, Levine, Ando

Let us switch to the next theme: "Higher Tp"

Motivation:

For Morin maps $f: M \rightarrow N$, i.e. stable maps having only A_{k}-singularities, the closure $S_{k}:=\overline{A_{k}(f)} \stackrel{\iota}{\hookrightarrow} M$ is a closed submanifold, then

$$
\iota_{*} c\left(T S_{k}\right)=\iota_{*}\left(1+c_{1}\left(T S_{k}\right)+\cdots\right) \in H^{*}(M)
$$

is sometimes thought as "higher Thom polynomials"
(Y. Ando, H. Levine, I. Porteous).

Its leading term is nothing but $\iota_{*}(1)=\operatorname{Dual}\left[S_{k}\right]=t p\left(A_{k}\right)$.

Tp for Morin maps: Porteous, Levine, Ando

Problem

- In general (for non-Morin maps) the closure S_{k} is not smooth, so $c\left(T S_{k}\right)$ does not make sense.

Tp for Morin maps: Porteous, Levine, Ando

Problem

- In general (for non-Morin maps) the closure S_{k} is not smooth, so $c\left(T S_{k}\right)$ does not make sense.
- The pushforward $\iota_{*} c\left(T S_{k}\right) \in H^{*}(M)$ is not a polynomial in the difference Chern class $c_{i}(f)=c_{i}\left(f^{*} T N-T M\right)$ (Here f is a Morin map).

Tp for Morin maps: Porteous, Levine, Ando

Problem

- In general (for non-Morin maps) the closure S_{k} is not smooth, so $c\left(T S_{k}\right)$ does not make sense.
- The pushforward $\iota_{*} c\left(T S_{k}\right) \in H^{*}(M)$ is not a polynomial in the difference Chern class $c_{i}(f)=c_{i}\left(f^{*} T N-T M\right)$ (Here f is a Morin map).

Solution

- We employ Chern class for singular varieties to develop a theory.

Tp for Morin maps: Porteous, Levine, Ando

Problem

- In general (for non-Morin maps) the closure S_{k} is not smooth, so $c\left(T S_{k}\right)$ does not make sense.
- The pushforward $\iota_{*} c\left(T S_{k}\right) \in H^{*}(M)$ is not a polynomial in the difference Chern class $c_{i}(f)=c_{i}\left(f^{*} T N-T M\right)$ (Here f is a Morin map).

Solution

- We employ Chern class for singular varieties to develop a theory.
- A genuine generalization of Tp must be for the Segre class, the Chern class of normal bundle $c(\nu)\left(\nu=T M-T S_{k}\right)$ if S_{k} is smooth, not of tangent bundle.

Chern class for singular varieties

Let X be a (singular) complex algebraic variety.

Chern class for singular varieties

Let X be a (singular) complex algebraic variety.
$\mathcal{F}(X)$: the abelian group of constructible functions over X,

$$
\alpha: X \rightarrow \mathbb{Z}, \quad \alpha=\sum_{\text {finite }} a_{i} \mathbb{1}_{W_{i}} \quad\left(a_{i} \in \mathbb{Z} \text { and } W_{i}: \text { subvarieties }\right)
$$

For proper morphisms $f: X \rightarrow Y$, we define $f_{*}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$:

$$
f_{*} \mathbb{1}_{W}(y):=\int_{f^{-1}(y)} \mathbb{1}_{W}:=\chi\left(W \cap f^{-1}(y)\right) \quad(y \in Y)
$$

For proper $f: X \rightarrow Y, g: Y \rightarrow Z$, it holds that $(g \circ f)_{*}=g_{*} \circ f_{*}$.

$$
\mathcal{F}: \mathcal{V a r} \rightarrow \mathcal{A} b: \text { covariant functor }
$$

Chern class for singular varieties

$M^{+}(X)$: the group completion of the monoid generated by the isomorphism classes (\mathcal{R}-equiv.) of morphisms $[\rho: M \rightarrow X]$ of manifolds M to X.

Chern class for singular varieties

$M^{+}(X)$: the group completion of the monoid generated by the isomorphism classes (\mathcal{R}-equiv.) of morphisms $[\rho: M \rightarrow X]$ of manifolds M to X.
Define $\quad e[\rho: M \rightarrow X]:=\rho_{*} \mathbb{1}_{M}, \mathfrak{c}_{*}[\rho: M \rightarrow X]:=\rho_{*}(c(T M) \frown[M])$

Chern class for singular varieties

$M^{+}(X)$: the group completion of the monoid generated by the isomorphism classes (\mathcal{R}-equiv.) of morphisms $[\rho: M \rightarrow X]$ of manifolds M to X.
Define $\quad e[\rho: M \rightarrow X]:=\rho_{*} \mathbb{1}_{M}, \mathfrak{c}_{*}[\rho: M \rightarrow X]:=\rho_{*}(c(T M) \frown[M])$

Theorem 0.5 (MacPherson (1974))

$C_{*}:=\mathfrak{c}_{*} \circ e^{-1}: \mathcal{F}(X) \rightarrow H_{*}(X)$ is well-defined.

Chern class for singular varieties

Definition 2

$C_{*}(X):=C_{*}\left(\mathbb{1}_{X}\right)$ is called the Chern-Schwartz-MacPherson class (CSM class) of X.

- M. Schwartz (1965): relative Chern class for radial vector frames
- R. MacPherson (1974): local Euler obst. + Chern-Mather -J-P. Brasselet (1981): $c^{S c h}(X)=C_{*}\left(\mathbb{1}_{X}\right)$.

Chern class for singular varieties

Remark 0.6

- Naturality: $f_{*} C_{*}(\alpha)=C_{*}\left(f_{*}(\alpha)\right)$ for proper $f: X \rightarrow Y$

Chern class for singular varieties

Remark 0.6

- Naturality: $f_{*} C_{*}(\alpha)=C_{*}\left(f_{*}(\alpha)\right)$ for proper $f: X \rightarrow Y$
- Normalization: $C_{*}\left(\mathbb{1}_{X}\right)=c(T X) \frown[X]$ if X is non-singular.

Chern class for singular varieties

Remark 0.6

- Naturality: $f_{*} C_{*}(\alpha)=C_{*}\left(f_{*}(\alpha)\right)$ for proper $f: X \rightarrow Y$
- Normalization: $C_{*}\left(\mathbb{1}_{X}\right)=c(T X) \frown[X]$ if X is non-singular.
- Degree: For compact X, the pushforward of $p t: X \rightarrow p t$ is

$$
p t_{*} C_{*}\left(\mathbb{1}_{W}\right)=\chi(W)=\int_{X} \mathbb{1}_{W}
$$

In particular, $C_{*}(X)=\chi(X)[p t]+\cdots+[X] \in H_{*}(X)$

Chern class for singular varieties

Remark 0.6

- Naturality: $f_{*} C_{*}(\alpha)=C_{*}\left(f_{*}(\alpha)\right)$ for proper $f: X \rightarrow Y$
- Normalization: $C_{*}\left(\mathbb{1}_{X}\right)=c(T X) \frown[X]$ if X is non-singular.
- Degree: For compact X, the pushforward of $p t: X \rightarrow p t$ is

$$
p t_{*} C_{*}\left(\mathbb{1}_{W}\right)=\chi(W)=\int_{X} \mathbb{1}_{W}
$$

In particular, $C_{*}(X)=\chi(X)[p t]+\cdots+[X] \in H_{*}(X)$

- Exclusion-Inclusion property $=$ Additivity:

$$
C_{*}\left(\mathbb{1}_{A \cup B}\right)=C_{*}\left(\mathbb{1}_{A}\right)+C_{*}\left(\mathbb{1}_{B}\right)-C_{*}\left(\mathbb{1}_{A \cap B}\right)
$$

Segre-SM class

Apply C_{*} to a manifold: $\quad C_{*}: \mathcal{F}(M) \rightarrow H^{*}(M) \quad$ (omit Dual)

Segre-SM class

Apply C_{*} to a manifold: $\quad C_{*}: \mathcal{F}(M) \rightarrow H^{*}(M) \quad$ (omit Dual)
Inverse normal Chern class (Segre class):
For a closed submanifold $W \stackrel{\iota}{\hookrightarrow} M$, let ν be the normal bundle,

$$
C_{*}\left(\mathbb{1}_{W}\right)=\iota_{*}(c(T W))=\iota_{*}\left(c\left(\iota^{*} T M-\nu\right)\right)=c(T M) \cdot \iota_{*} c(-\nu)
$$

Segre-SM class

Apply C_{*} to a manifold: $\quad C_{*}: \mathcal{F}(M) \rightarrow H^{*}(M) \quad$ (omit Dual)
Inverse normal Chern class (Segre class):
For a closed submanifold $W \stackrel{\iota}{\hookrightarrow} M$, let ν be the normal bundle,

$$
C_{*}\left(\mathbb{1}_{W}\right)=\iota_{*}(c(T W))=\iota_{*}\left(c\left(\iota^{*} T M-\nu\right)\right)=c(T M) \cdot \iota_{*} c(-\nu)
$$

- inverse normal Chern classes behaves well for transverse sections:

If f is transverse to W, the fiber square gives $f^{*} \iota_{*} c\left(-\nu_{W}\right)=\iota_{*}^{\prime} c\left(-\nu_{W^{\prime}}^{\prime}\right)$

Segre-SM class

Apply C_{*} to a manifold: $\quad C_{*}: \mathcal{F}(M) \rightarrow H^{*}(M) \quad$ (omit Dual)
Inverse normal Chern class (Segre class):
For a closed submanifold $W \stackrel{\iota}{\hookrightarrow} M$, let ν be the normal bundle,

$$
C_{*}\left(\mathbb{1}_{W}\right)=\iota_{*}(c(T W))=\iota_{*}\left(c\left(\iota^{*} T M-\nu\right)\right)=c(T M) \cdot \iota_{*} c(-\nu)
$$

- inverse normal Chern classes behaves well for transverse sections:

If f is transverse to W, the fiber square gives $f^{*} \iota_{*} c\left(-\nu_{W}\right)=\iota_{*}^{\prime} c\left(-\nu_{W^{\prime}}^{\prime}\right)$

- If W is singular, $c(-\nu)$ is not defined.

Segre-SM class

Then we define

Definition 3

The Segre-SM class for the embedding $\iota: W \hookrightarrow M$ is defined to be

$$
C_{*}\left(\mathbb{1}_{W}\right)=c(T M) \cdot s^{S M}(W, M) \quad \in H^{*}(M) .
$$

Also for $\alpha \in \mathcal{F}(M), s^{S M}(\alpha, M)$ is defined.

- If W is smooth, $s^{S M}(W, M)=\iota_{*} c(-\nu)$.
- The Segre-SM class behaves well for transverse sections.

Higher Thom polynomials

Given a \mathcal{K}-invariant constructible function $\alpha: \mathcal{O}(m, m+k) \rightarrow \mathbb{Z}$. For generic maps $f: M \rightarrow N$ of map-codim. k, we put a constr. ft

$$
\alpha(f): M \rightarrow \mathbb{Z}, \quad x \in M \mapsto \text { the value } \alpha \text { of the germ } f \text { at } x .
$$

Higher Thom polynomials

Given a \mathcal{K}-invariant constructible function $\alpha: \mathcal{O}(m, m+k) \rightarrow \mathbb{Z}$. For generic maps $f: M \rightarrow N$ of map-codim. k, we put a constr. ft

$$
\alpha(f): M \rightarrow \mathbb{Z}, \quad x \in M \mapsto \text { the value } \alpha \text { of the germ } f \text { at } x .
$$

We then define Higher Tp by the following thm:
Theorem 0.7 (Ohm)
There exists a universal power series $\operatorname{tp}^{S M}(\alpha) \in \mathbb{Z}\left[\left[c_{1}, c_{2}, \cdots\right]\right]$ so that

Higher Thom polynomials

Given a \mathcal{K}-invariant constructible function $\alpha: \mathcal{O}(m, m+k) \rightarrow \mathbb{Z}$. For generic maps $f: M \rightarrow N$ of map-codim. k, we put a constr. ft

$$
\alpha(f): M \rightarrow \mathbb{Z}, \quad x \in M \mapsto \text { the value } \alpha \text { of the germ } f \text { at } x .
$$

We then define Higher Tp by the following thm:

Theorem 0.7 (Ohm)

There exists a universal power series $t p^{S M}(\alpha) \in \mathbb{Z}\left[\left[c_{1}, c_{2}, \cdots\right]\right]$ so that for any generic maps $f: M \rightarrow N$, the series evaluated by $c_{i}=c_{i}(f)$ expresses the Segre-SM class $s^{S M}(\alpha(f), M)$, i.e.,

$$
C_{*}(\alpha(f))=c(T M) \cdot t p^{S M}(\alpha)(f) \quad \in H^{*}(M)
$$

Higher Thom polynomials

Given a \mathcal{K}-invariant constructible function $\alpha: \mathcal{O}(m, m+k) \rightarrow \mathbb{Z}$. For generic maps $f: M \rightarrow N$ of map-codim. k, we put a constr. ft

$$
\alpha(f): M \rightarrow \mathbb{Z}, \quad x \in M \mapsto \text { the value } \alpha \text { of the germ } f \text { at } x .
$$

We then define Higher Tp by the following thm:

Theorem 0.7 (Ohm)

There exists a universal power series $t p^{S M}(\alpha) \in \mathbb{Z}\left[\left[c_{1}, c_{2}, \cdots\right]\right]$ so that for any generic maps $f: M \rightarrow N$, the series evaluated by $c_{i}=c_{i}(f)$ expresses the Segre-SM class $s^{S M}(\alpha(f), M)$, i.e.,

$$
C_{*}(\alpha(f))=c(T M) \cdot t p^{S M}(\alpha)(f) \quad \in H^{*}(M)
$$

Put $t p^{S M}(\bar{\eta}):=t p^{S M}\left(\mathbb{1}_{\bar{\eta}}\right)$ for $\alpha=\mathbb{1}_{\bar{\eta}}$ supported on the orbit closure.

Higher Thom polynomials

Remark 0.8

- Since $s^{S M}(W, M)=c(T M)^{-1} \cdot C_{*}\left(\mathbb{1}_{W}\right)=\operatorname{Dual}[W]+$ h.o.t, the leading term of the series is nothing but the Thom polynomial:

$$
t p^{S M}(\bar{\eta})=t p(\eta)+\text { h.o.t }
$$

- For generic maps $f: M \rightarrow N$, the Euler characteristic of the singular locus of type η is universally expressed by

$$
\chi(\overline{\eta(f)})=\int_{M} c(T M) \cdot t p^{S M}(\bar{\eta})(f)
$$

Higher Thom polynomials

Remark 0.9

- To compute low dimensional terms of the universal power series $t p^{S M}(\bar{\eta})$, Rimanyi's method is very effective.

Higher Thom polynomials

Remark 0.9

- To compute low dimensional terms of the universal power series $t p^{S M}(\bar{\eta})$, Rimanyi's method is very effective.
- For singular varieties several kinds of Chern classes are available: CSM class $C_{*}(X)$, Chern-Mather class $c^{M}(X)=C_{*}\left(E u_{X}\right)$, Fulton's Chern class and Fulton-Johnson class. So Higher TP depends on your choice.

Higher Thom polynomials

The following is a very special case: we have a closed formula:

Higher Thom polynomials

The following is a very special case: we have a closed formula:

Theorem 0.10 (Ohm)

Let $\ell=m-n \geq 0$. Let $\mu: \mathcal{O}(m, n) \rightarrow \mathbb{Z}$ be the Milnor number function, which assigns to any ICIS germ its Milnor number, 0 otherwise.
Then, for a stable map $f: M \rightarrow N$, the Segre-SM class $s^{S M}(\mu(f), M)=c(T M)^{-1} C_{*}(\mu(f))$ is universally expressed by

$$
t^{S M}(\mu)=(-1)^{\ell+1}\left(1+c_{1}+c_{2}+\cdots\right)\left(\bar{c}_{\ell+1}+\bar{c}_{\ell+2}+\cdots\right)
$$

$$
\text { where } c_{i}=c_{i}(f)=c_{i}\left(f^{*} T N-T M\right), \bar{c}_{i}=\bar{c}_{i}(f)=c_{i}\left(T M-f^{*} T N\right)
$$

Higher Thom polynomials

Corollary 0.11 (Greuel-Hamm, Guisti, Damon, Alexandrov, etc)

Let $\eta: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$ be a weighted homogeneous ICIS, and take a universal map $f_{\eta}: E_{0} \rightarrow E_{1}$ associated to its weights and degrees. Then, the Milnor number of ICIS η is expressed by

$$
\mu_{\eta}=\int_{E_{0}} \frac{C_{*}\left(\mu\left(f_{\eta}\right)\right)}{c_{t o p}\left(E_{0}\right)}=(-1)^{m-n}\left(\frac{c_{n}\left(E_{1}\right)}{c_{m}\left(E_{0}\right)} c_{m-n}\left(E_{0}-E_{1}\right)-1\right)
$$

Higher Thom polynomials

Corollary 0.11 (Greuel-Hamm, Guisti, Damon, Alexandrov, etc)

Let $\eta: \mathbb{C}^{m}, 0 \rightarrow \mathbb{C}^{n}, 0$ be a weighted homogeneous ICIS, and take a universal map $f_{\eta}: E_{0} \rightarrow E_{1}$ associated to its weights and degrees. Then, the Milnor number of ICIS η is expressed by

$$
\mu_{\eta}=\int_{E_{0}} \frac{C_{*}\left(\mu\left(f_{\eta}\right)\right)}{c_{t o p}\left(E_{0}\right)}=(-1)^{m-n}\left(\frac{c_{n}\left(E_{1}\right)}{c_{m}\left(E_{0}\right)} c_{m-n}\left(E_{0}-E_{1}\right)-1\right)
$$

Example 0.12

In case of $n=1$, i.e., η is a w. h. isolated hypersurface singularity:

$$
\mu_{\eta}=(-1)^{m} \frac{c_{m}\left(E_{0}-E_{1}\right)}{c_{m}\left(E_{0}\right)}=\frac{\text { top. }(-1)^{m} \prod\left(1+\left(w_{i}-d\right) t\right)}{\text { top. } \prod\left(1+w_{i} t\right)}=\prod_{i=1}^{m} \frac{d-w_{i}}{w_{i}}
$$

Higher Thom polynomials

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated singularities embedded in a manifold M, the degree of the Milnor class

$$
\mathcal{M}(X):=(-1)^{\ell+1}\left(C_{*}(X)-c\left(\left.T M\right|_{X}-\nu\right)\right)
$$

equals the sum of the Milnor numbers: $\mathcal{M}(X)=\int_{X} \mu$.

Higher Thom polynomials

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated singularities embedded in a manifold M, the degree of the Milnor class

$$
\mathcal{M}(X):=(-1)^{\ell+1}\left(C_{*}(X)-c\left(\left.T M\right|_{X}-\nu\right)\right)
$$

equals the sum of the Milnor numbers: $\mathcal{M}(X)=\int_{X} \mu$.
Our formula of $t p^{S M}(\mu)$ can be applied to a T-equivariant complete intersection $X \subset M$ with weighted homogeneous isolated singularities.

Higher Thom polynomials

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated singularities embedded in a manifold M, the degree of the Milnor class

$$
\mathcal{M}(X):=(-1)^{\ell+1}\left(C_{*}(X)-c\left(\left.T M\right|_{X}-\nu\right)\right)
$$

equals the sum of the Milnor numbers: $\mathcal{M}(X)=\int_{X} \mu$.
Our formula of $t p^{S M}(\mu)$ can be applied to a T-equivariant complete intersection $X \subset M$ with weighted homogeneous isolated singularities. The degree of Equivariant Milnor class

$$
\mathcal{M}^{T}(X)=(-1)^{\ell+1}\left(C_{*}^{T}(X)-c^{T}\left(\left.T M\right|_{X}-\nu\right)\right)
$$

equals the sum of the localization of the equivariant CSM class $C_{*}^{T}(\mu)=c^{T}(T M) \cdot t p^{S M}(\mu)$ to singular points.

Today's summary

- Tp for multi-singularities (Kazarian theory)

Today's summary

- Tp for multi-singularities (Kazarian theory)
- Stable invariants for w. h. map-germs can be computed by localizing Tp.

Today's summary

- Tp for multi-singularities (Kazarian theory)
- Stable invariants for w. h. map-germs can be computed by localizing Tp.
- As a higher Thom polynomial, Segre-SM class $t p^{S M}$ is introduced.

Até amanhã．Tchau！また明日！

