Lipschitz Regularity and multiplicity of analytic sets

Jose Edson Sampaio Universidade Federal do Ceará

July 28, 2016

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

1 / 36

Lipschitz regularity

э

< □ > <

Lipschitz regularity

Theorem (_____ (2016))

Let $X \subset \mathbb{C}^n$ be a complex analytic set. If there is a bi-Lipschitz homeomorphism $h : (X, 0) \to (\mathbb{C}^d, 0)$, then (X, 0) is smooth.

・ロト ・同ト ・ヨト ・ヨト

Multiplicity

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

э

< 17 ▶

э

Multiplicity

Theorem (Fernandes and _____ (2016))

The metric version of the Zariski's conjecture has a positive answer if, and only if, it has a positive answer for homogeneous algebraic sets.

Multiplicity

Theorem (Fernandes and _____ (2016))

The metric version of the Zariski's conjecture has a positive answer if, and only if, it has a positive answer for homogeneous algebraic sets.

Theorem (Fernandes and _____ (2016))

Let $f, g: (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$ be two reduced analytic function-germs and $h: (\mathbb{C}^3, V(f), 0) \to (\mathbb{C}^3, V(g), 0)$ be a bi-Lipschitz homeomorphism. Then, m(V(f), 0) = m(V(g), 0).

Zariski's conjecture for multiplicity Regularity

Motivation

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016 4 / 36

-

Zariski's conjecture for multiplicity

Zariski's conjectures

э

Zariski's conjecture for multiplicity Regularity

Zariski's conjectures

In 1971, O. Zariski proposed the following problem:

Zariski's conjecture for multiplicity Regularity

Zariski's conjectures

In 1971, O. Zariski proposed the following problem:

Problem A (Zariski's Conjecture)

Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two reduced analytic function-germs. If there is a homeomorphism $h: (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$, then is it true that m(V(f), 0) = m(V(g), 0)?

Zariski's conjecture for multiplicity Regularity

Differentiable invariance of multiplicity

Zariski's conjecture for multiplicity Regularity

Differentiable invariance of multiplicity

Theorem (Ephraim (1976))

If there is a homeomorphism $h : (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$ such that h and h^{-1} are differentiable at origin, then m(V(f), 0) = m(V(g), 0).

- 4 3 4 4 3 4

Zariski's conjecture for multiplicity Regularity

Differentiable invariance of multiplicity

Theorem (Ephraim (1976))

If there is a homeomorphism $h : (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$ such that h and h^{-1} are differentiable at origin, then m(V(f), 0) = m(V(g), 0).

Theorem (Trotman (1977))

If there is a homeomorphism $h : (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$ such that h is C^1 , then m(V(f), 0) = m(V(g), 0).

Zariski's conjecture for multiplicity Regularity

Invariance of multiplicity in codimension ≥ 1

< 台

Zariski's conjecture for multiplicity Regularity

Invariance of multiplicity in codimension ≥ 1

Theorem (Gau and Lipman (1983))

If there is a homeomorphism $h : (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ such that h and h^{-1} are differentiable at origin, then m(X, 0) = m(Y, 0).

Zariski's conjecture for multiplicity Regularity

Invariance of multiplicity in codimension ≥ 1

Theorem (Gau and Lipman (1983))

If there is a homeomorphism $h : (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ such that h and h^{-1} are differentiable at origin, then m(X, 0) = m(Y, 0).

Theorem (Comte (1998))

Given (X,0) and (Y,0) two complex analytic germs of \mathbb{C}^n of dimension $d \leq n$, $M = \max(m(X,0), m(Y,0))$ and $h: (X,0) \rightarrow (Y,0)$ a bi-Lipschitz homeomorphism such that:

$$rac{1}{C'} \|x-y\| \le \|h(x)-hy)\| \le C \|x-y\|, \quad ext{for all } x,y \in X$$

and $C'C \leq (1+\frac{1}{M})^{\frac{1}{2d}}$, then m(X,0) = m(Y,0).

Zariski's conjecture for multiplicity Regularity

Invariance of multiplicity of complex surfaces

Zariski's conjecture for multiplicity Regularity

Invariance of multiplicity of complex surfaces

Theorem (Saeki (1988) and Yau (1988))

Let (X, 0) and (Y, 0) be two complex analytic surfaces of \mathbb{C}^3 . Suppose that X and Y are quasi-homogeneous with isolated singularity. If there is a homeomorphism $h: (\mathbb{C}^3, X, 0) \to (\mathbb{C}^3, Y, 0)$, then m(X, 0) = m(Y, 0).

Zariski's conjecture for multiplicity Regularity

Invariance of multiplicity of complex surfaces

Theorem (Saeki (1988) and Yau (1988))

Let (X, 0) and (Y, 0) be two complex analytic surfaces of \mathbb{C}^3 . Suppose that X and Y are quasi-homogeneous with isolated singularity. If there is a homeomorphism $h: (\mathbb{C}^3, X, 0) \to (\mathbb{C}^3, Y, 0)$, then m(X, 0) = m(Y, 0).

Theorem (Pichon and Neumann (2016))

Let (X, 0) and (Y, 0) be two normal complex surfaces of \mathbb{C}^n . If there is a bi-Lipschitz homeomorphism $h : (X, 0) \to (Y, 0)$, then m(X, 0) = m(Y, 0).

Zariski's conjecture for multiplicity Regularity

Metric version of the Zariski's conjecture

Zariski's conjecture for multiplicity Regularity

Metric version of the Zariski's conjecture

Conjecture A

Let $X, Y \subset \mathbb{C}^n$ be two complex analytic sets. If there is a bi-Lipschitz homeomorphism $h : (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$, then m(X, 0) = m(Y, 0).

Zariski's conjecture for multiplicity Regularity

Metric version of the Zariski's conjecture

Conjecture A

Let $X, Y \subset \mathbb{C}^n$ be two complex analytic sets. If there is a bi-Lipschitz homeomorphism $h : (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$, then m(X, 0) = m(Y, 0).

Conjecture AH

Let $X, Y \subset \mathbb{C}^n$ be two irreducible homogeneous complex algebraic sets. If there is a bi-Lipschitz homeomorphism $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$, then m(X, 0) = m(Y, 0).

(*) *) *) *)

Zariski's conjecture for multiplicity Regularity

The conjectures A and AH are equivalents

Zariski's conjecture for multiplicity Regularity

The conjectures A and AH are equivalents

Theorem (Fernandes and _____ (2016))

The Conjecture A has a positive answer if, and only if, the Conjecture AH has a positive answer.

Zariski's conjecture for multiplicity Regularity

Regularity

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

< ∃→ July 28, 2016

(日)

11 / 36

э

Zariski's conjecture for multiplicity Regularity

Regularity

Theorem (Mumford (1961))

Topologically regular and normal complex surface is smooth.

э

э

< A >

- ∢ ≣ ▶

Zariski's conjecture for multiplicity Regularity

< □ > < 同 >

- ∢ ≣ ▶

Regularity

Theorem (Mumford (1961))

Topologically regular and normal complex surface is smooth.

Theorem (Prill (1967))

Topologically regular complex cone is a plane.

Zariski's conjecture for multiplicity Regularity

Regularity

Theorem (Mumford (1961))

Topologically regular and normal complex surface is smooth.

Theorem (Prill (1967))

Topologically regular complex cone is a plane.

Theorem (A'Campo (1973) and Lê (1973))

If there is a homeomorphism $h : (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$ and m(V(f), 0) = 1, then m(V(g), 0) = 1.

・ロト ・得ト ・ヨト ・ヨト

Zariski's conjecture for multiplicity Regularity

Regularity

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

< ∃→ July 28, 2016 12 / 36

э

(日)

Zariski's conjecture for multiplicity Regularity

Regularity

Theorem (Birbrair, Fernandes, Lê and _____ (2016))

Let $X \subset \mathbb{C}^n$ be a complex analytic set. If there is a subanalytic bi-Lipschitz homeomorphism $h : (X, 0) \to (\mathbb{C}^d, 0)$, then (X, 0) is smooth.

-∢ ≣ ▶

Zariski's conjecture for multiplicity Regularity

Regularity

Theorem (Birbrair, Fernandes, Lê and _____ (2016))

Let $X \subset \mathbb{C}^n$ be a complex analytic set. If there is a subanalytic bi-Lipschitz homeomorphism $h : (X, 0) \to (\mathbb{C}^d, 0)$, then (X, 0) is smooth.

Theorem (_____ (2016))

Let $X \subset \mathbb{C}^n$ be a complex analytic set. If there is a bi-Lipschitz homeomorphism $h : (X, 0) \to (\mathbb{C}^d, 0)$, then (X, 0) is smooth.

・ロト ・得ト ・ヨト ・ヨト

Preliminaries

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

13 / 36

Tangent cone

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

< ∃⇒ July 28, 2016

- E

14 / 36

э

Tangent cone

Definition

We say that $v \in \mathbb{R}^n$ is a tangent vector of X at $x_0 \in \mathbb{R}^n$ if there are a sequence of points $\{x_i\} \subset X \setminus \{x_0\}$ tending to x_0 and sequence of positive real numbers $\{t_i\}$ such that

$$\lim_{i\to\infty}\frac{1}{t_i}(x_i-x_0)=v.$$

Tangent cone

Definition

We say that $v \in \mathbb{R}^n$ is a tangent vector of X at $x_0 \in \mathbb{R}^n$ if there are a sequence of points $\{x_i\} \subset X \setminus \{x_0\}$ tending to x_0 and sequence of positive real numbers $\{t_i\}$ such that

$$\lim_{i\to\infty}\frac{1}{t_i}(x_i-x_0)=v.$$

Definition

Let $C(X, x_0)$ denote the set of all tangent vectors of X at $x_0 \in \mathbb{R}^n$. We call $C(X, x_0)$ the **tangent cone** of X at x_0 .

Lipschitz invariance of the tangent cone

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

15 / 36

Lipschitz invariance of the tangent cone

Theorem (Koike and Paunescu (2009))

Let $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a bi-Lipschitz homeomorphism. If A and h(A) are subanalytics sets at $0 \in \mathbb{R}^n$, then dim $C(A, 0) = \dim C(h(A), 0)$.

Lipschitz invariance of the tangent cone

Theorem (Koike and Paunescu (2009))

Let $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a bi-Lipschitz homeomorphism. If A and h(A) are subanalytics sets at $0 \in \mathbb{R}^n$, then dim $C(A, 0) = \dim C(h(A), 0)$.

Theorem (_____ (2016))

Let $X, Y \subset \mathbb{R}^n$ be two germs of subanalytic subsets. If $h: (X,0) \to (Y,0)$ is a bi-Lipschitz homeomorphism, then there is a bi-Lipschitz homeomorphism $dh: (C(X,0),0) \to (C(Y,0),0)$.

・ロト ・同ト ・ヨト ・ヨト

Lelong's numbers

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

.⊒ →

- ∢ 同 ▶ - ∢ 三

16 / 36

э

Lelong's numbers

Definition

Consider the mapping $\rho : \mathbb{S}^{m-1} \times \mathbb{R}^+ \to \mathbb{R}^m$ given by $\rho(x, r) = rx$.

Lelong's numbers

Definition

Consider the mapping $\rho : \mathbb{S}^{m-1} \times \mathbb{R}^+ \to \mathbb{R}^m$ given by $\rho(x, r) = rx$.

Proposition/definition

Let $X \subset \mathbb{C}^n$ be a complex analytic set such that $0 \in X$. If $X_1, ..., X_r$ are the irreducible components of the tangent cone C(X, 0), then for each X_j and for $x \in (X_j \cap \mathbb{S}^{2n-1}) \times \{0\}$ generic, the number of connected components of $\rho^{-1}(X \setminus \{0\}) \cap U_x$ is constant, where U_x is an open sufficiently small with $x \in U_x$. In this case, we define this number by $k_X(X_j)$.

Lelong's numbers

Definition

Consider the mapping $\rho : \mathbb{S}^{m-1} \times \mathbb{R}^+ \to \mathbb{R}^m$ given by $\rho(x, r) = rx$.

Proposition/definition

Let $X \subset \mathbb{C}^n$ be a complex analytic set such that $0 \in X$. If $X_1, ..., X_r$ are the irreducible components of the tangent cone C(X, 0), then for each X_j and for $x \in (X_j \cap \mathbb{S}^{2n-1}) \times \{0\}$ generic, the number of connected components of $\rho^{-1}(X \setminus \{0\}) \cap U_x$ is constant, where U_x is an open sufficiently small with $x \in U_x$. In this case, we define this number by $k_X(X_j)$.

 $k_X(X_j)$ is called the Lelong number of X_j (over X).

Edson Sampaio

Invariance of Lelong's numbers

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

э

17 / 36

Invariance of Lelong's numbers

Theorem (Kurdika and Raby (1989))

The Lelong's numbers are invariants by analytic isomorphism.

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016 17 / 36

Invariance of Lelong's numbers

Theorem (Kurdika and Raby (1989))

The Lelong's numbers are invariants by analytic isomorphism.

Theorem (Valette (2010))

The Lelong's numbers are invariants by subanalytic bi-Lipschitz homeomorphism.

Lipschitz invariance of the Lelong's numbers

Theorem (Fernandes and _____ (2016))

Let $X, Y \subset \mathbb{C}^n$ be germs of analytic subsets at $0 \in \mathbb{C}^n$ and let X_1, \ldots, X_r and Y_1, \ldots, Y_s be the irreducible components of the cones C(X, 0) and C(Y, 0) respectively. If there exists a bi-Lipschitz homeomorphism $h : (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$, then r = s and, up to a re-ordering of index, $Y_j = dh(X_j)$ and $k_X(X_j) = k_Y(Y_j), \forall j$.

Definition of multiplicity

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

✓ ≧ ▶ < ≧ ▶</p>
July 28, 2016

19 / 36

э

Definition of multiplicity

Here an analytic set of \mathbb{C}^n is an analytic set with pure dimension.

Definition of multiplicity

Here an analytic set of \mathbb{C}^n is an analytic set with pure dimension.

Remark

Let X be an analytic set in \mathbb{C}^n with $d = \dim X$ and $0 \in X$. Then, $\#\pi^{-1}(t) \cap (X \cap U)$ is constant for $\pi : \mathbb{C}^n \to \mathbb{C}^d$ being a generic linear projection and t generic close to $0 \in \mathbb{C}^d$, where U is a neighborhood of $O \in \mathbb{C}^n$ sufficiently small.

Definition of multiplicity

Here an analytic set of \mathbb{C}^n is an analytic set with pure dimension.

Remark

Let X be an analytic set in \mathbb{C}^n with $d = \dim X$ and $0 \in X$. Then, $\#\pi^{-1}(t) \cap (X \cap U)$ is constant for $\pi : \mathbb{C}^n \to \mathbb{C}^d$ being a generic linear projection and t generic close to $0 \in \mathbb{C}^d$, where U is a neighborhood of $O \in \mathbb{C}^n$ sufficiently small.

Definition

In this case, we define the **multiplicity of** X at 0 to be $m(X, 0) = \#\pi^{-1}(t) \cap (X \cap U)$ for $t \in \pi(U)$ generic.

Multiplicity and smoothness

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

20 / 36

э

Multiplicity and smoothness

We have a way to decide if a complex analytic set is smooth.

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

20 / 36

Multiplicity and smoothness

We have a way to decide if a complex analytic set is smooth.

Remark

(X, 0) is smooth iff m(X, 0) = 1.

Lelong's numbers and multiplicity

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

21 / 36

э

Lelong's numbers and multiplicity

We have a relation between the Lelong's numbers and the multiplicity.

-

Lelong's numbers and multiplicity

We have a relation between the Lelong's numbers and the multiplicity.

Remark

Let $C(X,0) = X_1 \cup ... \cup X_r$ be the decomposition in irreducible components of C(X,0), then

$$m(X,0) = \sum_{j=1}^{r} k_X(X_j)m(X_j,0).$$

Edson Sampaio

July 28, 2016 21 / 36

* E > < E >

Transversal Milnor numbers

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

✓ ≧ ► < ≧ ► 3</p>
July 28, 2016

э

22 / 36

Transversal Milnor numbers

Proposition/definition

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a reduced analytic function-germ with dim Sing(f) = 1 and $Sing(f) = C_1 \cup ... \cup C_r$. We denote by $\mu'_j(f)$ the Milnor number of f, restricted to a generic hyperplane slice, at a point $p \in C_j \setminus \{0\}$ close to 0. We call the sum $\mu'(f) := \sum_{j=1}^r \mu'_j(f)$ the **Transversal Milnor number of** f.

Transversal Milnor numbers

Proposition/definition

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a reduced analytic function-germ with dim Sing(f) = 1 and $Sing(f) = C_1 \cup ... \cup C_r$. We denote by $\mu'_j(f)$ the Milnor number of f, restricted to a generic hyperplane slice, at a point $p \in C_j \setminus \{0\}$ close to 0. We call the sum $\mu'(f) := \sum_{j=1}^r \mu'_j(f)$ the **Transversal Milnor number of** f.

Theorem (Lê (1973))

Let $f, g : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two reduced analytic function-germs and $h : (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^{,}V(g), 0)$ be a homeomorphism. Then, $\mu'(f) = \mu'(g)$.

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Main results

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

23 / 36

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Lipschitz regularity of complex analytic sets

- ∢ ≣ ▶

Image: Image:

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Lipschitz regularity of complex analytic sets

Theorem (_____ (2016))

Let $X \subset \mathbb{C}^n$ be a complex analytic set. If there is a bi-Lipschitz homeomorphism $h : (X, 0) \to (\mathbb{C}^d, 0)$, then (X, 0) is smooth.

・ロト ・同ト ・ヨト ・ヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016

э

25 / 36

<ロ> <同> <同> < 同> < 同>

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• $Y_1 = C(\mathbb{C}^d, 0) = \mathbb{C}^d$. Then $k_{\mathbb{C}^d}(\mathbb{C}^d) = 1$ and $m(\mathbb{C}^d, 0) = 1$.

э

イロト イポト イヨト イヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

- $Y_1 = C(\mathbb{C}^d, 0) = \mathbb{C}^d$. Then $k_{\mathbb{C}^d}(\mathbb{C}^d) = 1$ and $m(\mathbb{C}^d, 0) = 1$.
- By Lipschitz invariance of the tangent cones, $Y_1 = dh(X_1)$ with $X_1 = C(X, 0)$. In particular, X_1 is topologically regular.

・ロト ・同ト ・ヨト ・ヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

- $Y_1 = C(\mathbb{C}^d, 0) = \mathbb{C}^d$. Then $k_{\mathbb{C}^d}(\mathbb{C}^d) = 1$ and $m(\mathbb{C}^d, 0) = 1$.
- By Lipschitz invariance of the tangent cones, $Y_1 = dh(X_1)$ with $X_1 = C(X, 0)$. In particular, X_1 is topologically regular.
- By Prill's Theorem, X_1 is a plane and then $m(X_1, 0) = 1$.

- 4 同 6 4 日 6 4 日 6

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

- $Y_1 = C(\mathbb{C}^d, 0) = \mathbb{C}^d$. Then $k_{\mathbb{C}^d}(\mathbb{C}^d) = 1$ and $m(\mathbb{C}^d, 0) = 1$.
- By Lipschitz invariance of the tangent cones, $Y_1 = dh(X_1)$ with $X_1 = C(X, 0)$. In particular, X_1 is topologically regular.
- By Prill's Theorem, X_1 is a plane and then $m(X_1, 0) = 1$.
- By bi-Lipschitz invariance of Lelong's numbers, we have $k_X(X_1) = 1$, since $k_Y(Y_1) = 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

- $Y_1 = C(\mathbb{C}^d, 0) = \mathbb{C}^d$. Then $k_{\mathbb{C}^d}(\mathbb{C}^d) = 1$ and $m(\mathbb{C}^d, 0) = 1$.
- By Lipschitz invariance of the tangent cones, $Y_1 = dh(X_1)$ with $X_1 = C(X, 0)$. In particular, X_1 is topologically regular.
- By Prill's Theorem, X_1 is a plane and then $m(X_1, 0) = 1$.
- By bi-Lipschitz invariance of Lelong's numbers, we have $k_X(X_1) = 1$, since $k_Y(Y_1) = 1$.
- But $m(X,0) = \sum k_X(X_j) \cdot m(X_j,0) = k_X(X_1) \cdot m(X_1,0) = 1.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

- $Y_1 = C(\mathbb{C}^d, 0) = \mathbb{C}^d$. Then $k_{\mathbb{C}^d}(\mathbb{C}^d) = 1$ and $m(\mathbb{C}^d, 0) = 1$.
- By Lipschitz invariance of the tangent cones, $Y_1 = dh(X_1)$ with $X_1 = C(X, 0)$. In particular, X_1 is topologically regular.
- By Prill's Theorem, X_1 is a plane and then $m(X_1, 0) = 1$.
- By bi-Lipschitz invariance of Lelong's numbers, we have $k_X(X_1) = 1$, since $k_Y(Y_1) = 1$.
- But $m(X,0) = \sum k_X(X_j) \cdot m(X_j,0) = k_X(X_1) \cdot m(X_1,0) = 1.$
- Therefore (X, 0) is smooth.

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduction of the Zariski's Conjecture

< 口 > < 同

Zariski's Conjecture once more

э

∃ >

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Zariski's Conjecture once more

Conjecture A

Let $X, Y \subset \mathbb{C}^n$ be two complex analytic sets. If there is a bi-Lipschitz homeomorphism $h : (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$, then m(X, 0) = m(Y, 0).

- ₹ 🖬 🕨

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Zariski's Conjecture once more

Conjecture A

Let $X, Y \subset \mathbb{C}^n$ be two complex analytic sets. If there is a bi-Lipschitz homeomorphism $h : (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$, then m(X, 0) = m(Y, 0).

Conjecture AH

Let $X, Y \subset \mathbb{C}^n$ be two irreducible homogeneous complex algebraic sets. If there is a bi-Lipschitz homeomorphism $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$, then m(X, 0) = m(Y, 0).

July 28, 2016 26 / 36

・ロト ・同ト ・ヨト ・ヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Reduction of the Zariski's Conjecture

-

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Reduction of the Zariski's Conjecture

Theorem 2. (Fernandes and _____ (2016))

The Conjecture A has a positive answer if, and only if, the Conjecture AH has a positive answer.

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.

- ₹ 🖬 🕨

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

- Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.
- There is a bi-Lipschitz homeomorphism $dh: (\mathbb{C}^n, X_j, 0) \to (\mathbb{C}^n, Y_j, 0), j = 1, ..., r,$

A B > A B >

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

- Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.
- There is a bi-Lipschitz homeomorphism $dh: (\mathbb{C}^n, X_j, 0) \rightarrow (\mathbb{C}^n, Y_j, 0), j = 1, ..., r,$ • where $C(X, 0) = X_1 \cup ... \cup X_r$ and $C(Y, 0) = Y_1 \cup ... \cup Y_r$.

A B > A B >

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.

• There is a bi-Lipschitz homeomorphism $dh: (\mathbb{C}^n, X_j, 0) \rightarrow (\mathbb{C}^n, Y_j, 0), j = 1, ..., r,$ • where $C(X, 0) = X_1 \cup ... \cup X_r$ and $C(Y, 0) = Y_1 \cup ... \cup Y_r$. • If the Conjecture AH has a positive answer, then

 $m(X_j, 0) = m(Y_j, 0), j = 1, ..., r.$

(*) *) *) *)

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

- Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.
- There is a bi-Lipschitz homeomorphism dh: (ℂⁿ, X_j, 0) → (ℂⁿ, Y_j, 0), j = 1, ..., r, where C(X, 0) = X₁ ∪ ... ∪ X_r and C(Y, 0) = Y₁ ∪ ... ∪ Y_r.
 If the Conjecture AH has a positive answer, then m(X_j, 0) = m(Y_j, 0), j = 1, ..., r.
 By bi-Lipschitz invariance of Lelong's numbers, we have k_X(X_i) = k_Y(Y_i).

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

- Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.
- There is a bi-Lipschitz homeomorphism $dh: (\mathbb{C}^n, X_j, 0) \rightarrow (\mathbb{C}^n, Y_j, 0), j = 1, ..., r,$ • where $C(X, 0) = X_1 \cup ... \cup X_r$ and $C(Y, 0) = Y_1 \cup ... \cup Y_r$. • If the Conjecture AH has a positive answer, then $m(X_j, 0) = m(Y_j, 0), j = 1, ..., r.$ • By bi-Lipschitz invariance of Lelong's numbers, we have $k_X(X_j) = k_Y(Y_j).$

$$\sum k_X(X_j) \cdot m(X_j, 0) = \sum k_Y(Y_j) \cdot m(Y_j, 0)$$

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

- Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.
- There is a bi-Lipschitz homeomorphism $dh: (\mathbb{C}^n, X_j, 0) \rightarrow (\mathbb{C}^n, Y_j, 0), j = 1, ..., r,$ • where $C(X, 0) = X_1 \cup ... \cup X_r$ and $C(Y, 0) = Y_1 \cup ... \cup Y_r$. • If the Conjecture AH has a positive answer, then $m(X_j, 0) = m(Y_j, 0), j = 1, ..., r.$ • By bi-Lipschitz invariance of Lelong's numbers, we have $k_X(X_j) = k_Y(Y_j).$

$$m(X,0) = \sum k_X(X_j) \cdot m(X_j,0) = \sum k_Y(Y_j) \cdot m(Y_j,0)$$

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

- Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.
- There is a bi-Lipschitz homeomorphism $dh: (\mathbb{C}^n, X_j, 0) \rightarrow (\mathbb{C}^n, Y_j, 0), j = 1, ..., r,$ • where $C(X, 0) = X_1 \cup ... \cup X_r$ and $C(Y, 0) = Y_1 \cup ... \cup Y_r$. • If the Conjecture AH has a positive answer, then $m(X_j, 0) = m(Y_j, 0), j = 1, ..., r.$ • By bi-Lipschitz invariance of Lelong's numbers, we have $k_X(X_j) = k_Y(Y_j).$

$$m(X,0) = \sum k_X(X_j) \cdot m(X_j,0) = \sum k_Y(Y_j) \cdot m(Y_j,0) = m(Y,0).$$

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

The conjecture AH implies the conjecture A

- Let $h: (\mathbb{C}^n, X, 0) \to (\mathbb{C}^n, Y, 0)$ be a bi-Lipschitz homeomorphism.
- There is a bi-Lipschitz homeomorphism $dh: (\mathbb{C}^n, X_j, 0) \rightarrow (\mathbb{C}^n, Y_j, 0), j = 1, ..., r,$ • where $C(X, 0) = X_1 \cup ... \cup X_r$ and $C(Y, 0) = Y_1 \cup ... \cup Y_r$. • If the Conjecture AH has a positive answer, then $m(X_j, 0) = m(Y_j, 0), j = 1, ..., r.$ • By bi-Lipschitz invariance of Lelong's numbers, we have $k_X(X_j) = k_Y(Y_j).$

$$m(X,0) = \sum k_X(X_j) \cdot m(X_j,0) = \sum k_Y(Y_j) \cdot m(Y_j,0) = m(Y,0).$$

Therefore the Conjecture A has a positive answer.

(人間) ト く ヨ ト く ヨ ト

Reduction of the Zariski's Conjecture Invariance of multiplicity

Invariance of multiplicity

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

э July 28, 2016

-

< □ > < 同 >

29 / 36

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Invariance of multiplicity

Theorem 3.1. (Fernandes and _____ (2016))

Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two reduced analytic function-germs and $h: (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$ be a bi-Lipschitz homeomorphism. If each irreducible component of C(V(f), 0) has isolated singularity at 0, then m(V(f), 0) = m(V(g), 0).

・ロト ・同ト ・ヨト ・ヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Invariance of multiplicity

Theorem 3.1. (Fernandes and _____ (2016))

Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two reduced analytic function-germs and $h: (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$ be a bi-Lipschitz homeomorphism. If each irreducible component of C(V(f), 0) has isolated singularity at 0, then m(V(f), 0) = m(V(g), 0).

By Theorem 2, is sufficiently to prove the following result.

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Invariance of multiplicity

Theorem 3.1. (Fernandes and _____ (2016))

Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two reduced analytic function-germs and $h: (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$ be a bi-Lipschitz homeomorphism. If each irreducible component of C(V(f), 0) has isolated singularity at 0, then m(V(f), 0) = m(V(g), 0).

By Theorem 2, is sufficiently to prove the following result.

Theorem (Fernandes and _____ (2016))

Let $f, g : \mathbb{C}^n \to \mathbb{C}$ be two irreducible homogeneous polynomials and $h : (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$ be a homeomorphism. If V(f) has isolated singularity at 0, then m(V(f), 0) = m(V(g), 0).

・ロト ・同ト ・ヨト ・ヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Define d = m(V(f), 0) and e = m(V(g), 0).

э

30 / 36

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By Theorem of A'Campo-Lê, we can suppose e, d > 1.

э

< 日 > < 同 > < 三 > < 三 >

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By Theorem of A'Campo-Lê, we can suppose e, d > 1. If V(f) has isolated singularity, then by Theorem of A'Campo-Lê, V(f) has isolated singularity, as well.

・ロト ・同ト ・ヨト ・ヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By Theorem of A'Campo-Lê, we can suppose e, d > 1. If V(f) has isolated singularity, then by Theorem of A'Campo-Lê, V(f) has isolated singularity, as well. The Theorem follows from

$$(d-1)^n = \mu(f) = \mu(g) = (e-1)^n.$$
 (1)

・ロト ・同ト ・ヨト ・ヨト

Reduction of the Zariski's Conjecture Invariance of multiplicity

< □ > < 同 >

< E

Invariance of multiplicity

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

э July 28, 2016 31 / 36

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Invariance of multiplicity

Theorem 3.2. (Fernandes and _____ (2016))

Let $f, g: (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$ be two reduced analytic function-germs and $h: (\mathbb{C}^3, V(f), 0) \to (\mathbb{C}^3, V(g), 0)$ be a bi-Lipschitz homeomorphism. Then m(V(f), 0) = m(V(g), 0).

Theorem

Let $f, g : \mathbb{C}^3 \to \mathbb{C}$ be irreducible homogeneous polynomials and $h : (\mathbb{C}^3, V(f), 0) \to (\mathbb{C}^3, V(g), 0)$ be a homeomorphism. Then m(V(f), 0) = m(V(g), 0).

・ロト ・同ト ・ヨト ・ヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Invariance of multiplicity

Theorem 3.2. (Fernandes and _____ (2016))

Let $f, g: (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$ be two reduced analytic function-germs and $h: (\mathbb{C}^3, V(f), 0) \to (\mathbb{C}^3, V(g), 0)$ be a bi-Lipschitz homeomorphism. Then m(V(f), 0) = m(V(g), 0).

By Theorem 2, is sufficiently to prove the following result.

Theorem

Let $f, g : \mathbb{C}^3 \to \mathbb{C}$ be irreducible homogeneous polynomials and $h : (\mathbb{C}^3, V(f), 0) \to (\mathbb{C}^3, V(g), 0)$ be a homeomorphism. Then m(V(f), 0) = m(V(g), 0).

・ロト ・同ト ・ヨト ・ヨト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Define d = m(V(f), 0) and e = m(V(g), 0).

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

< 口 > < 同 >

- ₹ 🖬 🕨

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By the last Therem, we can suppose that dim $Sing(f) = \dim Sing(g) = 1$ and by Theorem of A'Campo-Lê, we can suppose e, d > 1.

3.5

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

< 口 > < 同 >

- ₹ 🖬 🕨

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By the last Therem, we can suppose that dim $Sing(f) = \dim Sing(g) = 1$ and by Theorem of A'Campo-Lê, we can suppose e, d > 1.

3.5

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

< 口 > < 同 >

- ₹ 🖬 🕨

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By the last Therem, we can suppose that dim $Sing(f) = \dim Sing(g) = 1$ and by Theorem of A'Campo-Lê, we can suppose e, d > 1.

3.5

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By the last Therem, we can suppose that dim $Sing(f) = \dim Sing(g) = 1$ and by Theorem of A'Campo-Lê, we can suppose e, d > 1. If n = 3, then we have the Lê-lomdin formulas

- ₹ 🖬 🕨

Image: A matrix

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By the last Therem, we can suppose that dim $Sing(f) = \dim Sing(g) = 1$ and by Theorem of A'Campo-Lê, we can suppose e, d > 1. If n = 3, then we have the Lê-lomdin formulas

$$(d-1)^3 = \chi(F_f) - 1 + d\mu'(f)$$
(2)

$$(e-1)^3 = \chi(F_g) - 1 + e\mu'(g)$$
 (3)

- ₹ 🖬 🕨

Image: A matrix

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

Define d = m(V(f), 0) and e = m(V(g), 0). By the last Therem, we can suppose that dim $Sing(f) = \dim Sing(g) = 1$ and by Theorem of A'Campo-Lê, we can suppose e, d > 1. If n = 3, then we have the Lê-lomdin formulas

$$(d-1)^3 = \chi(F_f) - 1 + d\mu'(f)$$
 (2)

$$(e-1)^3 = \chi(F_g) - 1 + e\mu'(g)$$
(3)

and we have $\mu' = \mu'(f) = \mu'(g)$.

A B F A B F

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) = 0$ (and thus $\chi(F_g) = 0$), then d and e are roots of

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) = 0$ (and thus $\chi(F_g) = 0$), then d and e are roots of

$$x^2 - 3x + 3 - \mu' = 0 \tag{4}$$

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) = 0$ (and thus $\chi(F_g) = 0$), then d and e are roots of

$$x^2 - 3x + 3 - \mu' = 0 \tag{4}$$

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) = 0$ (and thus $\chi(F_g) = 0$), then d and e are roots of

$$x^2 - 3x + 3 - \mu' = 0 \tag{4}$$

But the equation (4) has only one solution greater than 1.

< 日 > < 同 > < 三 > < 三 >

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) = 0$ (and thus $\chi(F_g) = 0$), then d and e are roots of

$$x^2 - 3x + 3 - \mu' = 0 \tag{4}$$

But the equation (4) has only one solution greater than 1. Thus d = e.

< 日 > < 同 > < 三 > < 三 >

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) \neq 0$ (and thus $\chi(F_g) \neq 0$), then

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) \neq 0$ (and thus $\chi(F_g) \neq 0$), then We can take the monodromy homeomorphism as $h_f(x) = e^{\frac{2\pi i}{d}x}$.

< 日 > < 同 > < 三 > < 三 >

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) \neq 0$ (and thus $\chi(F_g) \neq 0$), then

We can take the monodromy homeomorphism as $h_f(x) = e^{\frac{2\pi i}{d}x}$. Using the Topological Cylindric Structure at infinity, we have that F_f has the same homotopy type of $F = \{x \in \mathbb{C}^n; ||x|| \le R\} \cap F_f$, for R large enough.

- 4 同 ト - 4 目 ト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) \neq 0$ (and thus $\chi(F_g) \neq 0$), then We can take the monodromy homeomorphism as $h_f(x) = e^{\frac{2\pi i}{d}x}$. Using the Topological Cylindric Structure at infinity, we have that F_f has the same homotopy type of $F = \{x \in \mathbb{C}^n; ||x|| \leq R\} \cap F_f$, for R large enough. h_f and $\bar{h}_f := h_f|_F : F \to F$ has the same homotopy type.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) \neq 0$ (and thus $\chi(F_g) \neq 0$), then

We can take the monodromy homeomorphism as $h_f(x) = e^{\frac{2\pi i}{d}x}$. Using the Topological Cylindric Structure at infinity, we have that F_f has the same homotopy type of $F = \{x \in \mathbb{C}^n; \|x\| \le R\} \cap F_f$, for R large enough. h_f and $\overline{h_f} := h_f|_F : F \to F$ has the same homotopy type.

If 0 < k < d, then $\bar{h_f}^k$ does not have fixed point.

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• If $\chi(F_f) \neq 0$ (and thus $\chi(F_g) \neq 0$), then

We can take the monodromy homeomorphism as $h_f(x) = e^{\frac{2\pi i}{d}x}$. Using the Topological Cylindric Structure at infinity, we have that F_f has the same homotopy type of $F = \{x \in \mathbb{C}^n; \|x\| \le R\} \cap F_f$, for R large enough. h_f and $\overline{h_f} := h_f|_F : F \to F$ has the same homotopy type.

If 0 < k < d, then $\bar{h_f}^k$ does not have fixed point.

By Lefschetz's fixed point Theorem, $\Lambda(h_f^k) = \Lambda(\bar{h_f}^k) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

34 / 36

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• As
$$\Lambda(\bar{h_f}^d) = \Lambda(h_f^d) = \Lambda(id_{F_f}) = \chi(F_f) \neq 0$$
, then

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• As
$$\Lambda(\bar{h_f}^d) = \Lambda(h_f^d) = \Lambda(id_{F_f}) = \chi(F_f) \neq 0$$
, then
 $d = min\{k \in \mathbb{N} \setminus \{0\}; \Lambda(h_f^k) \neq 0\}$

э

35 / 36

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• As
$$\Lambda(\bar{h_f}^d) = \Lambda(h_f^d) = \Lambda(id_{F_f}) = \chi(F_f) \neq 0$$
, then
$$d = \min\{k \in \mathbb{N} \setminus \{0\}; \Lambda(h_f^k) \neq 0\}$$

and likewise

э

<ロ> (日) (日) (日) (日) (日)

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Proof

• As
$$\Lambda(\bar{h_f}^d) = \Lambda(h_f^d) = \Lambda(id_{F_f}) = \chi(F_f) \neq 0$$
, then
$$d = \min\{k \in \mathbb{N} \setminus \{0\}; \Lambda(h_f^k) \neq 0\}$$

and likewise

$$e = min\{k \in \mathbb{N} \setminus \{0\}; \Lambda(h_g^k) \neq 0\}.$$

э

<ロ> (日) (日) (日) (日) (日)

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

< □ > < 同 >

< ∃ >

Proof

• As
$$\Lambda(\bar{h_f}^d) = \Lambda(h_f^d) = \Lambda(id_{F_f}) = \chi(F_f) \neq 0$$
, then
$$d = \min\{k \in \mathbb{N} \setminus \{0\}; \Lambda(h_f^k) \neq 0\}$$

and likewise

$$e = min\{k \in \mathbb{N} \setminus \{0\}; \Lambda(h_g^k) \neq 0\}.$$

Using the homotopy invariance of Lefschetz's numbers, we have

- ∢ ≣ →

Reduction of the Zariski's Conjecture Invariance of multiplicity

< □ > < 同 >

Proof

• As
$$\Lambda(\bar{h_f}^d) = \Lambda(h_f^d) = \Lambda(id_{F_f}) = \chi(F_f) \neq 0$$
, then
$$d = \min\{k \in \mathbb{N} \setminus \{0\}; \Lambda(h_f^k) \neq 0\}$$

and likewise

$$e = min\{k \in \mathbb{N} \setminus \{0\}; \Lambda(h_g^k) \neq 0\}.$$

Using the homotopy invariance of Lefschetz's numbers, we have

$$d = e$$
.

< ∃ >

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Thanks!

July 28, 2016 36 / 36

э

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

A'Campo, N.

Le nombre de Lefschetz d'une monodromie.(French) Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math., vol. 35, pp. 113–118, 1973.

BIRBRAIR, L.; FERNANDES, A.; LÊ D. T. and SAMPAIO, J. E.

Lipschitz regular complex algebraic sets are smooth, Proceedings of the American Mathematical Society, v. 144, pp. 983–987, 2016.

BIRBRAIR, L.; FERNANDES, A. and GRANDJEAN, V. Thin-thick decomposition for real definable isolated singularities,

preprint 2014, http://arxiv.org/pdf/1505.07309v1.pdf.

BOBADILLA, J. F.

Answers to some equisingularity questions

Edson Sampaio

July 28, 2016 36 / 36

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Invent. math., vol. 161, pp. 657–675, 2005.

CHIRKA, E. M.

Complex analytic sets. Kluwer Academic Publishers, 1989.

COMTE, Georges.

Multiplicity of complex analytic sets and bi-Lipschitz maps. Real analytic and algebraic singularities (Nagoya/Sapporo/Hachioji, 1996) Pitman Res. Notes Math. Ser., vol. 381, pp.182–188, 1998.

DIMCA, Alexandru

Singularities and topology of hypersurfaces. New vork: Springer-Verlag, 1992.

DRAPER. R. N.

Intersection Theory in Analytic Geometry. Mathematische Annalen, vol. 180, pp. 175–204, 1969.

Edson Sampaio

Lipschitz Regularity and multiplicity of analytic sets

July 28, 2016 36 / 36

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

EPHRAIM, R.

C¹ preservation of multiplicity. Duke Math., vol. 43, pp. 797–803, 1976.

EYRAL, C.

Zariski's multiplicity question and aligned singularities. Comptes Rendus Mathematique, vol. 342, Issue 3, pp. 183–186, 2006.

EYRAL, C.

Zariski's multiplicity questions - A survey. New Zealand Journal of Mathematics, vol. 36, pp. 253–276, 2007.

GAU, Y.-N. and LIPMAN, J.

Differential invariance of multiplicity on analytic varieties. Inventiones mathematicae, vol. 73 (2), pp. 165–188, 1983.

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

GREUEL, Gert-Martin

Constant Milnor number implies constant multiplicity for quasihomogeneous singularities ...

Manuscripta Math. 56 (2), pp. 159-166, 1986.

IOMDIN, I. N.

Complex surfaces with a one-dimensional set of singularities. Siberian Mathematical Journal, vol. 15 (5), pp. 748–762, 1974. (Translated from Sibirskii Matematicheskii Zhurnal, Vol. 15, No. 5, pp. 1061–1082, September-October, 1974).

KARRAS, U.

Equimultiplicity of deformations of constant Milnor number. Proceedings of the conference on algebraic geometry (Berlin, 1985), pp. 186–209, Teubner-Texte Math., 92, Teubner, Leipzig, 1986.

KURDYKA, K. and RABY, G.

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Densité des ensembles sous-analytiques.

Ann. Inst. Fourier (Grenoble), vol. 39 (3), pp. 753–771, 1989.

LÊ D. T.

Topologie des singularités des hypersurfaces complexes. (French) Singularités à Cargèse, Asterisque, vol. 7 and 8, pp. 171-182, 1973.

LÊ D. T.

Calcul du nombre de cycles évanouissants d'une hypersurface complexe.

(French) Ann. Inst. Fourier (Grenoble), vol. 23 (4), pp. 261-270, 1973.

LÊ D. T.

Ensembles analytiques complexes avec lieu singulier de dimension un.

- 4 同 6 4 日 6 4 日 6

(D'Apres I. N. Iomdine), Seminar on Singularities (Paris, 1976/1977), Publ. Math. Univ. Paris VII 7, pp. 87–95, 1980.

MASSEY, David B.

Lê cycles and hypersurfaces singularities. Lecture Notes Math. 1615, Berlin: Springer-Verlag, 1995.

MASSEY, David B.

Lê's Work on Hypersurface Singularities. preprint 2007, http://www.matcuer.unam.mx/ ~singularities/Notas/Massey1.pdf.

MILNOR, J.

Singular points of complex hypersurfaces. Princeton: Princeton University Press, 1968.

NEUMANN, W. and PICHON, A.

Lipschitz geometry of complex surfaces: analytic invariants and equisingularity.

Edson Sampaio

July 28, 2016 36 / 36

preprint 2016, http://arxiv.org/pdf/1211.4897v3.pdf

PRILL, David.

Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple. Proc. Amer. Math. Soc., vol. 101 (2), pp. 260–262, 1987.

PRILL, David.

Cones in complex affine space are topologically singular. Proc. Amer. Math. Soc., vol. 18, pp. 178-182, 1967.

RANDELL. R.

On the topology of non-isolated singularities. Geometric Topology. Academic Press, New York-London, pp. 445-473, 1979.

SAEKI. O.,

Topological invariance of weights for weighted homogeneous isolated singularities in \mathbb{C}^3 .

July 28, 2016 36 / 36

Proc. Amer. Math. Soc., vol. 103 (3), pp. 905–909, 1988.

SAMPAIO, J. Edson

Bi-Lipschitz homeomorphic subanalytic sets have bi-Lipschitz homeomorphic tangent cones. Selecta Math. (N.S.), v. online (2015), 1–7 (DOI: 10.1007/s00029-015-0195-9).

TROTMAN, D. *Multiplicity is a C*¹ *invariant*. University Paris 11 (Orsay), Preprint, 1977.

VALETTE, Guillaume.

Multiplicity mod 2 as a metric invariant. **Discrete Comput. Geom.**, 43: 663–679, 2010.

YAU, Stephen S.-T.

A B F A B F

Lipschitz regularity Reduction of the Zariski's Conjecture Invariance of multiplicity

Topological types and multiplicities of isolated quasi-homogeneous surface singularities. Bulletin (new series) of the American Mathematical Society, vol. 19 (2), pp. 447–454, 1988.

WHITNEY, H.

Complex Analytic Varieties.

California: Addison-Wesley publishing company, 1972.

🔋 ZARISKI, O.

Some open questions in the theory of singularities. Bull. of the Amer. Math. Soc., vol. 77 (4), pp. 481–491, 1971.

→ Ξ ► < Ξ ►</p>