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Lipschitz regularity

Theorem ( (2016))

Let X ⊂ Cn be a complex analytic set. If there is a bi-Lipschitz
homeomorphism h : (X , 0)→ (Cd , 0), then (X , 0) is smooth.
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Multiplicity

Theorem (Fernandes and (2016))

The metric version of the Zariski’s conjecture has a positive answer
if, and only if, it has a positive answer for homogeneous algebraic
sets.

Theorem (Fernandes and (2016))

Let f , g : (C3, 0)→ (C, 0) be two reduced analytic function-germs
and h : (C3,V (f ), 0)→ (C3,V (g), 0) be a bi-Lipschitz
homeomorphism. Then, m(V (f ), 0) = m(V (g), 0).
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Zariski’s conjecture for multiplicity
Regularity

Zariski’s conjectures

In 1971, O. Zariski proposed the following problem:

Problem A (Zariski’s Conjecture)

Let f , g : (Cn, 0)→ (C, 0) be two reduced analytic function-germs.
If there is a homeomorphism h : (Cn,V (f ), 0)→ (Cn,V (g), 0),
then is it true that m(V (f ), 0) = m(V (g), 0)?
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Zariski’s conjecture for multiplicity
Regularity

Differentiable invariance of multiplicity

Theorem (Ephraim (1976))

If there is a homeomorphism h : (Cn,V (f ), 0)→ (Cn,V (g), 0)
such that h and h−1 are differentiable at origin, then
m(V (f ), 0) = m(V (g), 0).

Theorem (Trotman (1977))

If there is a homeomorphism h : (Cn,V (f ), 0)→ (Cn,V (g), 0)
such that h is C 1, then m(V (f ), 0) = m(V (g), 0).
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Invariance of multiplicity in codimension ≥ 1

Theorem (Gau and Lipman (1983))

If there is a homeomorphism h : (Cn,X , 0)→ (Cn,Y , 0) such that
h and h−1 are differentiable at origin, then m(X , 0) = m(Y , 0).

Theorem (Comte (1998))

Given (X , 0) and (Y , 0) two complex analytic germs of Cn of
dimension d ≤ n, M = max(m(X , 0),m(Y , 0)) and
h : (X , 0)→ (Y , 0) a bi-Lipschitz homeomorphism such that:

1

C ′
‖x − y‖ ≤ ‖h(x)− hy)‖ ≤ C‖x − y‖, for all x , y ∈ X

and C ′C ≤ (1 + 1
M )

1
2d , then m(X , 0) = m(Y , 0).
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Zariski’s conjecture for multiplicity
Regularity

Invariance of multiplicity of complex surfaces

Theorem (Saeki (1988) and Yau (1988))

Let (X , 0) and (Y , 0) be two complex analytic surfaces of C3.
Suppose that X and Y are quasi-homogeneous with isolated
singularity. If there is a homeomorphism
h : (C3,X , 0)→ (C3,Y , 0), then m(X , 0) = m(Y , 0).

Theorem (Pichon and Neumann (2016))

Let (X , 0) and (Y , 0) be two normal complex surfaces of Cn. If
there is a bi-Lipschitz homeomorphism h : (X , 0)→ (Y , 0), then
m(X , 0) = m(Y , 0).
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Metric version of the Zariski’s conjecture

Conjecture A

Let X ,Y ⊂ Cn be two complex analytic sets. If there is a
bi-Lipschitz homeomorphism h : (Cn,X , 0)→ (Cn,Y , 0), then
m(X , 0) = m(Y , 0).

Conjecture AH

Let X ,Y ⊂ Cn be two irreducible homogeneous complex algebraic
sets. If there is a bi-Lipschitz homeomorphism
h : (Cn,X , 0)→ (Cn,Y , 0), then m(X , 0) = m(Y , 0).
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Regularity

The conjectures A and AH are equivalents

Theorem (Fernandes and (2016))

The Conjecture A has a positive answer if, and only if, the
Conjecture AH has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 10 / 36



Main results
Motivation

Preliminaries
Main results once more

Zariski’s conjecture for multiplicity
Regularity

The conjectures A and AH are equivalents

Theorem (Fernandes and (2016))

The Conjecture A has a positive answer if, and only if, the
Conjecture AH has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 10 / 36



Main results
Motivation

Preliminaries
Main results once more

Zariski’s conjecture for multiplicity
Regularity

Regularity

Theorem (Mumford (1961))

Topologically regular and normal complex surface is smooth.

Theorem (Prill (1967))

Topologically regular complex cone is a plane.

Theorem (A’Campo (1973) and Lê (1973))

If there is a homeomorphism h : (Cn,V (f ), 0)→ (Cn,V (g), 0) and
m(V (f ), 0) = 1, then m(V (g), 0) = 1.
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Regularity

Theorem (Birbrair, Fernandes, Lê and (2016))

Let X ⊂ Cn be a complex analytic set. If there is a subanalytic
bi-Lipschitz homeomorphism h : (X , 0)→ (Cd , 0), then (X , 0) is
smooth.

Theorem ( (2016))

Let X ⊂ Cn be a complex analytic set. If there is a bi-Lipschitz
homeomorphism h : (X , 0)→ (Cd , 0), then (X , 0) is smooth.
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Tangent cone

Definition

We say that v ∈ Rn is a tangent vector of X at x0 ∈ Rn if there
are a sequence of points {xi} ⊂ X \ {x0} tending to x0 and
sequence of positive real numbers {ti} such that

lim
i→∞

1

ti
(xi − x0) = v .

Definition

Let C (X , x0) denote the set of all tangent vectors of X at x0 ∈ Rn.
We call C (X , x0) the tangent cone of X at x0.
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Lipschitz invariance of the tangent cone

Theorem (Koike and Paunescu (2009))

Let h : (Rn, 0)→ (Rn, 0) be a bi-Lipschitz homeomorphism. If A
and h(A) are subanalytics sets at 0 ∈ Rn, then
dimC (A, 0) = dimC (h(A), 0).

Theorem ( (2016))

Let X ,Y ⊂ Rn be two germs of subanalytic subsets. If
h : (X , 0)→ (Y , 0) is a bi-Lipschitz homeomorphism, then there is
a bi-Lipschitz homeomorphism dh : (C (X , 0), 0)→ (C (Y , 0), 0).
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Lelong’s numbers

Definition

Consider the mapping ρ : Sm−1 × R+ → Rm given by ρ(x , r) = rx .

Proposition/definition

Let X ⊂ Cn be a complex analytic set such that 0 ∈ X . If
X1, ...,Xr are the irreducible components of the tangent cone
C (X , 0), then for each Xj and for x ∈ (Xj ∩ S2n−1)× {0} generic,
the number of connected components of ρ−1(X \ {0}) ∩ Ux is
constant, where Ux is an open sufficiently small with x ∈ Ux . In
this case, we define this number by kX (Xj).

kX (Xj) is called the Lelong number of Xj (over X ).

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 16 / 36



Main results
Motivation

Preliminaries
Main results once more

Lelong’s numbers

Definition

Consider the mapping ρ : Sm−1 × R+ → Rm given by ρ(x , r) = rx .

Proposition/definition

Let X ⊂ Cn be a complex analytic set such that 0 ∈ X . If
X1, ...,Xr are the irreducible components of the tangent cone
C (X , 0), then for each Xj and for x ∈ (Xj ∩ S2n−1)× {0} generic,
the number of connected components of ρ−1(X \ {0}) ∩ Ux is
constant, where Ux is an open sufficiently small with x ∈ Ux . In
this case, we define this number by kX (Xj).

kX (Xj) is called the Lelong number of Xj (over X ).

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 16 / 36



Main results
Motivation

Preliminaries
Main results once more

Lelong’s numbers

Definition

Consider the mapping ρ : Sm−1 × R+ → Rm given by ρ(x , r) = rx .

Proposition/definition

Let X ⊂ Cn be a complex analytic set such that 0 ∈ X . If
X1, ...,Xr are the irreducible components of the tangent cone
C (X , 0), then for each Xj and for x ∈ (Xj ∩ S2n−1)× {0} generic,
the number of connected components of ρ−1(X \ {0}) ∩ Ux is
constant, where Ux is an open sufficiently small with x ∈ Ux . In
this case, we define this number by kX (Xj).

kX (Xj) is called the Lelong number of Xj (over X ).

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 16 / 36



Main results
Motivation

Preliminaries
Main results once more

Lelong’s numbers

Definition

Consider the mapping ρ : Sm−1 × R+ → Rm given by ρ(x , r) = rx .

Proposition/definition

Let X ⊂ Cn be a complex analytic set such that 0 ∈ X . If
X1, ...,Xr are the irreducible components of the tangent cone
C (X , 0), then for each Xj and for x ∈ (Xj ∩ S2n−1)× {0} generic,
the number of connected components of ρ−1(X \ {0}) ∩ Ux is
constant, where Ux is an open sufficiently small with x ∈ Ux . In
this case, we define this number by kX (Xj).

kX (Xj) is called the Lelong number of Xj (over X ).

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 16 / 36



Main results
Motivation

Preliminaries
Main results once more

Invariance of Lelong’s numbers

Theorem (Kurdika and Raby (1989))

The Lelong’s numbers are invariants by analytic isomorphism.

Theorem (Valette (2010))

The Lelong’s numbers are invariants by subanalytic bi-Lipschitz
homeomorphism.
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Lipschitz invariance of the Lelong’s numbers

Theorem (Fernandes and (2016))

Let X ,Y ⊂ Cn be germs of analytic subsets at 0 ∈ Cn and let
X1, . . . ,Xr and Y1, . . . ,Ys be the irreducible components of the
cones C (X , 0) and C (Y , 0) respectively . If there exists a
bi-Lipschitz homeomorphism h : (Cn,X , 0)→ (Cn,Y , 0), then
r = s and, up to a re-ordering of index, Yj = dh(Xj) and
kX (Xj) = kY (Yj), ∀ j .
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Definition of multiplicity

Here an analytic set of Cn is an analytic set with pure dimension.

Remark

Let X be an analytic set in Cn with d = dimX and 0 ∈ X . Then,
#π−1(t) ∩ (X ∩ U) is constant for π : Cn → Cd being a generic
linear projection and t generic close to 0 ∈ Cd , where U is a
neighborhood of O ∈ Cn sufficiently small.

Definition

In this case, we define the multiplicity of X at 0 to be
m(X , 0) = #π−1(t) ∩ (X ∩ U) for t ∈ π(U) generic.
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Multiplicity and smoothness

We have a way to decide if a complex analytic set is smooth.

Remark

(X , 0) is smooth iff m(X , 0) = 1.
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Lelong’s numbers and multiplicity

We have a relation between the Lelong’s numbers and the
multiplicity.

Remark

Let C (X , 0) = X1 ∪ ... ∪ Xr be the decomposition in irreducible
components of C (X , 0), then

m(X , 0) =
r∑

j=1

kX (Xj)m(Xj , 0).
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Transversal Milnor numbers

Proposition/definition

Let f : (Cn, 0)→ (C, 0) be a reduced analytic function-germ with
dim Sing(f ) = 1 and Sing(f ) = C1 ∪ ... ∪ Cr . We denote by µ′j(f )
the Milnor number of f, restricted to a generic hyperplane slice, at

a point p ∈ Cj \ {0} close to 0. We call the sum µ′(f ) :=
r∑

j=1
µ′j(f )

the Transversal Milnor number of f .

Theorem (Lê (1973))

Let f , g : (Cn, 0)→ (C, 0) be two reduced analytic function-germs
and h : (Cn,V (f ), 0)→ (C,V (g), 0) be a homeomorphism. Then,
µ′(f ) = µ′(g).

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 22 / 36



Main results
Motivation

Preliminaries
Main results once more

Transversal Milnor numbers

Proposition/definition

Let f : (Cn, 0)→ (C, 0) be a reduced analytic function-germ with
dim Sing(f ) = 1 and Sing(f ) = C1 ∪ ... ∪ Cr . We denote by µ′j(f )
the Milnor number of f, restricted to a generic hyperplane slice, at

a point p ∈ Cj \ {0} close to 0. We call the sum µ′(f ) :=
r∑

j=1
µ′j(f )

the Transversal Milnor number of f .

Theorem (Lê (1973))
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Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

Main results
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Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

Lipschitz regularity of complex analytic sets

Theorem ( (2016))

Let X ⊂ Cn be a complex analytic set. If there is a bi-Lipschitz
homeomorphism h : (X , 0)→ (Cd , 0), then (X , 0) is smooth.
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Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

Proof

• Y1 = C (Cd , 0) = Cd . Then kCd (Cd) = 1 and m(Cd , 0) = 1.
• By Lipschitz invariance of the tangent cones, Y1 = dh(X1) with
X1 = C (X , 0). In particular, X1 is topologically regular.
• By Prill’s Theorem, X1 is a plane and then m(X1, 0) = 1.
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (X1) = 1, since kY (Y1) = 1.
• But m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) = kX (X1) ·m(X1, 0) = 1.

• Therefore (X , 0) is smooth.
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Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

Zariski’s Conjecture once more

Conjecture A

Let X ,Y ⊂ Cn be two complex analytic sets. If there is a
bi-Lipschitz homeomorphism h : (Cn,X , 0)→ (Cn,Y , 0), then
m(X , 0) = m(Y , 0).

Conjecture AH

Let X ,Y ⊂ Cn be two irreducible homogeneous complex algebraic
sets. If there is a bi-Lipschitz homeomorphism
h : (Cn,X , 0)→ (Cn,Y , 0), then m(X , 0) = m(Y , 0).
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Reduction of the Zariski’s Conjecture

Theorem 2. (Fernandes and (2016))

The Conjecture A has a positive answer if, and only if, the
Conjecture AH has a positive answer.
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Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0) = m(Y , 0).

• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.

• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0) = m(Y , 0).

• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,

• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0) = m(Y , 0).

• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .

• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0) = m(Y , 0).

• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .

• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0) = m(Y , 0).

• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).

•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0) = m(Y , 0).

• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•

m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0)

= m(Y , 0).
• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0)

= m(Y , 0).
• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0) = m(Y , 0).

• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

The conjecture AH implies the conjecture A

• Let h : (Cn,X , 0)→ (Cn,Y , 0) be a bi-Lipschitz
homeomorphism.
• There is a bi-Lipschitz homeomorphism
dh : (Cn,Xj , 0)→ (Cn,Yj , 0), j = 1, ..., r ,
• where C (X , 0) = X1 ∪ ... ∪ Xr and C (Y , 0) = Y1 ∪ ... ∪ Yr .
• If the Conjecture AH has a positive answer, then
m(Xj , 0) = m(Yj , 0), j = 1, ..., r .
• By bi-Lipschitz invariance of Lelong’s numbers, we have
kX (Xj) = kY (Yj).
•
m(X , 0) =

∑
kX (Xj) ·m(Xj , 0) =

∑
kY (Yj) ·m(Yj , 0) = m(Y , 0).

• Therefore the Conjecture A has a positive answer.

Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 28 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

Invariance of multiplicity

Theorem 3.1. (Fernandes and (2016))

Let f , g : (Cn, 0)→ (C, 0) be two reduced analytic function-germs
and h : (Cn,V (f ), 0)→ (Cn,V (g), 0) be a bi-Lipschitz
homeomorphism. If each irreducible component of C (V (f ), 0) has
isolated singularity at 0, then m(V (f ), 0) = m(V (g), 0).

By Theorem 2, is sufficiently to prove the following result.

Theorem (Fernandes and (2016))

Let f , g : Cn → C be two irreducible homogeneous polynomials
and h : (Cn,V (f ), 0)→ (Cn,V (g), 0) be a homeomorphism. If
V (f ) has isolated singularity at 0, then m(V (f ), 0) = m(V (g), 0).
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Proof

Define d = m(V (f ), 0) and e = m(V (g), 0). By Theorem of
A’Campo-Lê, we can suppose e, d > 1.
If V (f ) has isolated singularity, then by Theorem of A’Campo-Lê,
V (f ) has isolated singularity, as well. The Theorem follows from

(d − 1)n = µ(f ) = µ(g) = (e − 1)n. (1)
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Invariance of multiplicity

Theorem 3.2. (Fernandes and (2016))

Let f , g : (C3, 0)→ (C, 0) be two reduced analytic function-germs
and h : (C3,V (f ), 0)→ (C3,V (g), 0) be a bi-Lipschitz
homeomorphism. Then m(V (f ), 0) = m(V (g), 0).

By Theorem 2, is sufficiently to prove the following result.

Theorem

Let f , g : C3 → C be irreducible homogeneous polynomials and
h : (C3,V (f ), 0)→ (C3,V (g), 0) be a homeomorphism. Then
m(V (f ), 0) = m(V (g), 0).
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Proof

Define d = m(V (f ), 0) and e = m(V (g), 0). By the last Therem,
we can suppose that dim Sing(f ) = dim Sing(g) = 1 and by
Theorem of A’Campo-Lê, we can suppose e, d > 1. If n = 3, then
we have the Lê-Iomdin formulas

(d − 1)3 = χ(Ff )− 1 + dµ′(f ) (2)

(e − 1)3 = χ(Fg )− 1 + eµ′(g) (3)

and we have µ′ = µ′(f ) = µ′(g).
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Proof

• If χ(Ff ) = 0 (and thus χ(Fg ) = 0), then d and e are roots of

x2 − 3x + 3− µ′ = 0 (4)

But the equation (4) has only one solution greater than 1.
Thus d = e.
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Proof

• If χ(Ff ) 6= 0 (and thus χ(Fg ) 6= 0), then

We can take the monodromy homeomorphism as hf (x) = e
2πi
d x .

Using the Topological Cylindric Structure at infinity, we have that
Ff has the same homotopy type of F = {x ∈ Cn; ‖x‖ ≤ R} ∩ Ff ,
for R large enough. hf and h̄f := hf |F : F → F has the same
homotopy type.

If 0 < k < d , then h̄f
k

does not have fixed point.

By Lefschetz’s fixed point Theorem, Λ(hkf ) = Λ(h̄f
k

) = 0.
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homotopy type.

If 0 < k < d , then h̄f
k

does not have fixed point.

By Lefschetz’s fixed point Theorem, Λ(hkf ) = Λ(h̄f
k

) = 0.
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Proof

• As Λ(h̄f
d

) = Λ(hdf ) = Λ(idFf
) = χ(Ff ) 6= 0, then

d = min{k ∈ N \ {0}; Λ(hkf ) 6= 0}

and likewise

e = min{k ∈ N \ {0}; Λ(hkg ) 6= 0}.

Using the homotopy invariance of Lefschetz’s numbers, we have

d = e.
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Edson Sampaio Lipschitz Regularity and multiplicity of analytic sets July 28, 2016 36 / 36



Main results
Motivation

Preliminaries
Main results once more

Lipschitz regularity
Reduction of the Zariski’s Conjecture
Invariance of multiplicity

A’Campo, N.
Le nombre de Lefschetz d’une monodromie.(French)
Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math., vol.
35, pp. 113–118, 1973.

BIRBRAIR, L.; FERNANDES, A.; LÊ D. T. and SAMPAIO, J.
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