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Method — Models with two time scales ż = dz
dt

{
εẋ = f (x , y) fast equation 0 < ε << 1
ẏ = g(x , y) slow equation

Study the two time scales separately (singular limit).

Slow time τ Rescale time: t = ετ , z ′ = dz
dτ

{
x ′ = f (x , y)
y ′ = εg(x , y)

ε→ 0

{
x ′ = f (x , y)
y ′ = 0

fast equation dominates

Fast time t

ε→ 0

{
0 = f (x , y) slow manifold
ẏ = g(x , y) slow equation



Models with two time scales

{
εẋ = f (x , y) fast equation x ∈ Rr

ẏ = g(x , y) slow equation y ∈ R`

For ε > 0 small:

I When f (x , y) is far from 0, then

|ẋ(t)| =
1

ε
|f (x , y)| >> |ẏ(t)| = |g(x , y)|

I A good approximation is to take y(t) ≈ constant, and then
study the solutions x(t) of

ẋ(t) =
1

ε
f (x , y)

that have the same qualitative behaviour as the solutions of
the layer equation:

ẋ(t) = f (x , y)

I Get a different differential equation for each y ∈ R.



Models with two time scales{
εẋ = f (x , y) fast equation
ẏ = g(x , y) slow equation

Example 1{
εẋ = −(x − y) fast equation
ẏ = −y slow equation

Phase portrait (x(t), y(t)) with ε = 1/20



Models with two time scales{
εẋ = f (x , y) fast equation
ẏ = g(x , y) slow equation

For 0 < ε << 1 we start with the analysis of the layer equation:

ẋ = f (x , y) with y constant

x∗ is an equilibrium of the layer equation when f (x∗, y) = 0



Example 1{
εẋ = −(x − y) = f (x , y) fast equation
ẏ = −y slow equation

For 0 < ε << 1 we start with the analysis of the layer equation:

ẋ = f (x , y) = −(x − y) with y constant

x∗ = y is the equilibrium of the layer equation.
∂f

∂x
(x∗, y) = −1 < 0

Solutions of the layer equation approach the line x = y .

x∗ is an attracting equilibrium of the layer equation.



Recall

V (x) vector field of class C k , k ≥ 1 with x ∈ U ⊂ Rn, open
x ∈ U equilibrium of V
ϕ(t, x0) the solution of ẋ = V (x) such that ϕ(0, x0) = x0

Definition
the equilibrium x of ẋ = V (x) is an attractor if
∃η > 0 such that,
if |x − x | < η and t > 0 then ϕ(t, x) is well defined and
lim
t→∞

ϕ(t, x) = x .

the equilibrium x of ẋ = V (x) is a repellor if
∃η > 0 such that,
if |x − x | < η and t < 0 then ϕ(t, x) is well defined and

lim
t→−∞

ϕ(t, x) = x .



Recall

V (x) vector field of class C k , k ≥ 1 with x ∈ U ⊂ Rn, open
x ∈ U equilibrium of V
ϕ(t, x0) the solution of ẋ = V (x) such that ϕ(0, x0) = x0

Definition
The equilibrium x of V is hyperbolic if all the eigenvalues of
DV (x) have non-zero real parts.

If all the eigenvalues have negative real parts, then x is an
attractor.
If all the eigenvalues have positive real parts, then x is a repellor.



Models with two time scales

{
εẋ = f (x , y) fast equation
ẏ = g(x , y) slow equation

Definition
The slow manifold L is the set of points where f = 0, i.e. the set
of equilibria of the layer equation, given by

L = {(x , y) : f (x , y) = 0}

The layer equation is not a good approximation near the slow
manifold, where f (x , y) ≈ 0.
Near the slow manifold the dynamics follows the slow equation.



Example 1{
εẋ = −(x − y) = f (x , y) fast equation
ẏ = −y slow equation

Slow manifold L = {(x , y) : f (x , y) = 0} = {(x , y) : x = y}
y = 0 is the only equilibrium of the slow equation in L and it is an
attractor.

The slow manifold is not flow-invariant.



Example 2

{
εẋ = x − x3 − y fast equation 0 < ε << 1
ẏ = x slow equation

Slow manifold L = {(x , y) : y = ϕ(x) = x − x3}
Dynamics on the slow manifold, (dashed: repellor)

x

yL = { y= x-x  }3



Example 2

{
εẋ = x − x3 − y fast equation 0 < ε << 1
ẏ = x slow equation

Slow manifold L = {(x , y) : y = ψ(x) = x − x3}

x

y

x

y

L cannot be written globally as a graph x = Φ(y).



Models with two time scales — singularities

{
εẋ = f (x , y) fast equation x ∈ Rr

ẏ = g(x , y) slow equation y ∈ R`

Slow manifold L = {(x , y) : f (x , y) = 0}
Generically L is a regular `-dimensional submanifold of Rr+`

(if rank
∂f

∂x
= r)

In one parameter families, L may have singular points.

Projection P : Rr+` −→ R`

Singularities of of P restricted to L

I If ` = 1, generically, singularities of P restricted to L are folds.

I If ` = 2, generically, singularities of P restricted to L are folds
and cusps.

I If ` = 3 ...



Models with two time scales — singularities

Dynamics on the slow manifold:{
0 = f (x , y) x ∈ Rr

ẏ = g(x , y) y ∈ R`

Generically, equilibria of the slow equation are not singularities of
the projection
but in one-parameter families, equilibria may occur at fold points.

Singularity theory provides a classification of folded equilibria of
slow equation.

Generically they are folded saddles and folded nodes.



Folded node



Folded node

Trapping region.



Folded node

Trajectories that reach the trapping region get funneled into repelling
part of slow manifold and jump back.



Folded node

Trajectories that reach the trapping region get funneled into repelling
part of slow manifold and jump back.

Canard
A solution that moves in the attracting part of the slow manifold,
passes close to the fold line,
and then follows the repelling part of the slow manifold for some
time.



Nerve Impulse

from: Hodgkin e Huxley, 1952

Action potential: experimental plot of voltage as a function of
time in squid giant axon.

Expect to find in models:

I single action potentials

I trains of action potentials, periodic solutions

I more complicated behaviour

depending on choices of parameters.



Models for nerve impulse

Qualitative properties:

I Attracting equilibrium.

I Action potentials of a well defined size.

I Threshold for triggering an action.

I Jump action.

I Slow return to equilibrium.

Use two time scales to create a model



First model — FitzHugh-Nagumo equation

{
εẋ = ϕ(x)− y fast equation
ẏ = x − γy − δ slow equation ε << 1

ϕ(x) = −x(x − a)(x − b) 0 < a < b δ ∈ R γ > 0

Layer equation ẋ = ϕ(x)− y

Two fold points on slow manifold.
x

y

slow manifold



First model — FitzHugh-Nagumo equation

{
εẋ = ϕ(x)− y fast equation
ẏ = x − γy − δ slow equation ε << 1

ϕ(x) = −x(x − a)(x − b) 0 < a < b δ ∈ R γ > 0

x

y
y=0
. γ small, δ ≈ 0

Large transient
y << 0, jump to action

Jump return
to equilibrium

Slow return to equilibrium is not possible in the plane.



First model — FitzHugh-Nagumo equation

{
εẋ = ϕ(x)− y fast equation
ẏ = x − γy − δ slow equation ε << 1

ϕ(x) = −x(x − a)(x − b) 0 < a < b δ ∈ R γ > 0

x

y
y=0
.

γ small, δ ≈ 0

x

y
y=0
.

γ small, δ >> 0

δ increases — equilibrium moves to repelling part of slow manifold.



Zeeman’s model for the nerve impulse (1972)


ẋ = −1− y slow equation
ẏ = −2(y + z) slow equation
εż = −(x + yz + z3) fast equation ε << 1

The slow manifold

x

y

z



Zeeman’s model for the nerve impulse (1972)


ẋ = −1− y slow equation
ẏ = −2(y + z) slow equation
εż = −(x + yz + z3) fast equation ε << 1

Slow manifold f (x , y , z) = −(x + yz + z3) = 0

Not regular:
∂f

∂z
= −3z2 − y = 0 Folds:

∂f

∂z
= 0

(x , y , z) = (2z3,−3z2, z) z 6= 0
∂2f

∂z2
= −6z 6= 0



Zeeman’s model for the nerve impulse (1972)



To get a jump, slow trajectories must run into the fold line.

If this happens all the way to the cusp, get arbitrarily small action
potentials.
The model avoids this by having an equilibrium of the slow
equation on the fold line.



Action potentials of well defined size

Equilibrium at the fold line — folded saddle
also creates threshold



Action potentials of well defined size

Equilibrium at the fold line — folded saddle
also creates threshold

Some trajectories will jump more than once:
fast return to equilibrium!



Action potentials of well defined size

Equilibrium at the fold line — folded saddle
also creates threshold

Some trajectories will jump more than once:
fast return to equilibrium!

(although the jumps are very small)
The model has to be adjusted.



Hodgkin-Huxley type: models for nerve impulse from
experiments


∂x

∂t
= −I − c0(x − V0)−

N∑
j=1

cjuj(y)(x − Vj)

∂yi
∂t

= (γi (x)− yi ) τi (x) , i = 1, . . . ,M

Variables
t ∈ R time
x ∈ R voltage, observed directly
yi ∈ [0, 1] probabilities of ionic gates opening
y = (y1, . . . , yM).



Hodgkin-Huxley type: models for nerve impulse from
experiments


∂x

∂t
= −I − c0(x − V0)−

N∑
j=1

cjuj(y)(x − Vj)

∂yi
∂t

= (γi (x)− yi ) τi (x) , i = 1, . . . ,M

Parameters
I ∈ R stimulus intensity
cj > 0 ionic gate strength
Vj ∈ R equilibrium voltage for ion j .



Hodgkin-Huxley type: models for nerve impulse from
experiments


∂x

∂t
= −I − c0(x − V0)−

N∑
j=1

cjuj(y)(x − Vj)

∂yi
∂t

= (γi (x)− yi ) τi (x) , i = 1, . . . ,M

Functions fitted to experimental data
uj(y) usually a monomial
γi : R −→ [0, 1] usually monotonic γ(x) = (γ1, . . . , γM)
τi : R −→ [0, 1] usually nonzero τ(x) = (τ1, . . . , τM)



Hodgkin-Huxley type: models for nerve impulse from
experiments


∂x

∂t
= −I − c0(x − V0)−

N∑
j=1

cjuj(y)(x − Vj)

∂yi
∂t

= (γi (x)− yi ) τi (x) , i = 1, . . . ,M

Original Hodgkin-Huxley model
N = 2 M = 3
ionic gates:
Na+ controlled by u1(y1, y2) = y3

1 y2

K+ controlled by u2(y3) = y4
3



Hodgkin-Huxley type: models for nerve impulse from
experiments


∂x

∂t
= −I − c0(x − V0)−

N∑
j=1

cjuj(y)(x − Vj)

∂yi
∂t

= (γi (x)− yi ) τi (x) , i = 1, . . . ,M

Original Hodgkin-Huxley model
N = 2 M = 3
ionic gates:
Na+ controlled by u1(y1, y2) = y3

1 y2

K+ controlled by u2(y3) = y4
3

x (voltage) and y1 (Na+ activation) faster.



Hodgkin-Huxley type


dx

dt
= −I − c0(x − V0)−

N∑
j=1

cjuj(y)(x − Vj)

dyi
dt

= (γi (x)− yi ) τi (x) i = 1, . . . ,M

One fast variable:

xfast = yi slow manifold is yi = γi (x) no folds



Hodgkin-Huxley type


dx

dt
= −I − c0(x − V0)−

N∑
j=1

cjuj(y)(x − Vj)

dyi
dt

= (γi (x)− yi ) τi (x) i = 1, . . . ,M

One fast variable:

xfast = x slow manifold is(
c0 +

∑N
j=1 cjuj(y)

)
x = −I + c0V0 +

∑N
j=1 cjuj(y)Vj

Since cj ≥ 0 and uj(y) ∈ [0, 1]:
No folds. Need at least two fast variables.



Hodgkin-Huxley model
dx

dt
= −I − c0(x − V0)−

2∑
j=1

cjuj(y)(x − Vj)

dyi
dt

= (γi (x)− yi ) τi (x) i = 1, . . . , 3
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two fast variables: x , y1

original model:
u1(y) = y3

1 y2, u2(y) = y4
3

graph: slow manifold
(y2, y

4
3 , x) for I = −10



Hodgkin-Huxley model
dx

dt
= −I − c0(x − V0)−

2∑
j=1

cjuj(y)(x − Vj)

dyi
dt

= (γi (x)− yi ) τi (x) i = 1, . . . , 3

slow manifold has:

I folds

I cusps

I a folded node

Get

I action potentals

I trains of action potentials

I canards



voltage as a function of time for Hodgkin-Huxley model
numerical plots

From Rubin and Wechselberger (2007)

Tomorrow — symmetries
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