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0.1 Introductory note – please read!

This minicourse is aimed at student and researchers who have some background in singularity
theory but have not studied singularities of mappings in depth. It makes use of some moderately
sophisticated ideas from commutative algebra, of which it does not assume prior knowledge. I hope
that by seeing how the commutative algebra works to prove significant results on singularities of
mappings, students will gain an appreciation for its meaning and power. The key notion is the
depth of module over a commutative ring (see the definition in the Appendix, Section 5). This will
appear at several points. More elementary is the notion of (Krull) dimension. This is defined in
commutative algebra in a way that makes no apparent reference to any geometry. Fortunately, the
commutative rings we use are always rings of germs of complex analytic functions in m complex
variables, Om, and for a module M over Om, its dimension is the (complex) geometric dimension
of its support, the variety of zeros in Cm of its annihilator ideal. Depth is always less than or equal
to dimension, and modules for which the two are equal are dignified with a special name; they are
Cohen-Macaulay modules. They are the “best-behaved” modules. Cohen-Macaulay modules play a
special role in proving “conservation of multiplicity”, the phenomenon, which is common in analytic
geometry, whose most familiar example may be the way that an isolated critical point of a function
g ∈ Om breaks up, under deformation, into a collection of isolated critical points whose multiplicities
(Milnor numbers) add up to the multiplicity of the original critical point. This example is relevant
here. By showing that a critical point with Milnor number µ <∞ breaks up into µ non-degenerate
critical points (i.e. with Milnor number 1), we are able to describe the topology of the Milnor fibre,
and relate a topological property, the rank of its middle homology, to an algebraic property – the
complex vector space dimension of the jacobian algebra Om /Jg, which at first seems to belong to
deformation theory. The main thrust of this minicourse is exactly the same. We will spend quite
a lot of effort showing that certain modules are Cohen-Macaulay in order to deduce conservation
of multiplicity and conclude that some number, defined as the vector space dimension of a certain
module, actually tells us about the topology of a stable perturbation of a map-germ with isolated
instability.

The lectures will cover the same ground as these lecture notes. They will work best if you
have these notes with you at the lectures. This will enable me not to have to write everything on
the board, and adjust the lecture to respond to the interests and questions of participants without
needing to cover everything that is in the lecture notes.

There are some exercises, and of course it will help if you try to do them during the minicourse.
Be confident that success is less important than grappling with the ideas.
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Lecture 1

1 Basic definitions, and some examples

1.1 µ versus τ

The conjecture concerns two numbers with which on can measure the complexity or degeneracy of
an analytic map-germ f : (Cn, S) → (Cn+1, 0) with isolated instability. At the outset we declare
two such germs to be left-right equivalent (or A -equivalent) if their expression as |S|-tuples of power
series are the same with respect to suitable coordinate systems on source and target. Note that
the notion of germ of mapping is particularly straightforward in analytic geometry – a germ is
determined by a power series, and vice versa. Slightly trickier is the notion of good representative
of a germ. We will come on to that later.

The first number its left-right codimension, or Ae-codimension – briefly, the number of parame-
ters needed for a versal unfolding of f , (i.e. which explores all possible deformations, up to left-right
equivalence). Equivalently, this is the minimum dimension of the parameter space of a parametrised
family of maps in which such a singularity (i.e. a germ in the given A -equivalence class) may occur
unavoidably.

The Ae-codimension be calculated algebraically by a variety of methods, which I will describe
shortly. It is finite if and only if the germ has “isolated instability”, just as for a hypersurface
singularity the Milnor number µ is finite if and only if the singularity is isolated.

The second number is a measurement of the topological complexity of the image of a stable
perturbation of a good representative of the germ. To make this notion precise requires some careful
definitions, so for now let me just say briefly that given a singularity, we pick a “good representative”,
on a “sufficiently small neighbourhood” (within which the mapping is topologically a cone on its
boundary), and then perturb the representative so that within this neighbourhood, the instability
disappears. We need to assume that such a perturbation exists. For this we require (n, n + 1) to
be in Mather’s “nice dimensions" ([Mat71]), where every map germ with isolated instability has a
stable perturbation – for (n, n + 1), this turns out to mean that n ≤ 15 – or, alternatively, that
f lies within a class, such as corank 1 map-germs, or multi-germs of immersions, where, again,
such perturbations always exist. Now, it turns out that the image of a stable perturbation has the
homotopy type of a wedge of spheres of dimension n (the topological dimension is 2n, of course, so
this is “middle dimension”), and the number we are after is the number of spheres in this wedge. It
is called the image Milnor number, µI . Caution: this is not the Milnor number of the image. If
n > 1 then the image of any germ other than an immersion has non-isolated singularities, and its
Milnor number is infinite. The image Milnor number refers to the topology of the image of a stable
perturbation, not the topology of a smoothing of the image.

The conjectural relation between the two numbers, is simply this
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Conjecture 1.1.
µI(f) ≥ Ae − codimension(f),

with equality in case f is quasihomogeneous.

(“quasihomogeneous” means weighted homogeneous with respect to suitable coordinates). The
conjectured relation betwen µI and Ae-codimension is closely analogous to the well known relation
µ ≥ τ for isolated hypersurface singualrities and isolated complete intersection singularities, where
µ is the Milnor number, the rank of the middle homology of a nearby non-singular level set, which
also becomes an equality in the quasihomogeneous case, and is sometimes referred to as a “µ–τ
type” relation.

Before I give any greater precision, let me give an example with which Terry Wall sparked my
interest many years ago. Some of the terms in this informal discussion will be defined formally in
the next section. We look at a smoothly bent and twisted piece of wire, ideally knotted so as to
guarantee a complicated picture. Closing one eye, what we see is in effect a planar projection of
the wire. The global picture is made up of a number of local pictures – by which I mean, pictures
which are homeomorphic to a cone on their boundary. This is true of any line drawing – or any
semi-algebraic set – and is something we are intuitively familiar with.

non-singular curve

simple crossing

local views

not a local view

Figure 1: Local and non-local views

We will refer to any convex open set within which the picture is homeomorphic to a cone on its
boundary as a Milnor ball.

Each diffeomorphism class of local picture centred at a point P in the plane corresponds to
a left-right equivalence class of multi-germ (R, S) → (R2, P ) parameterising it. To each of these
classes we can associate its viewing set : the set of centres of projection (“viewpoints”) Q ∈ R3

such that the planar projection from Q exhibits a local picture of this class. For example, for the
first order cusp, which one sees by looking at the curve along a tangent line, the viewing set is the
tangent developable surface of the curve. For the triple point, the viewing set is the collection of
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trisecant lines.
Two of these local views are stable: a portion of non-singular curve, and a simple crossing. Up

to diffeomorphism, they are not changed by slight movements of the viewpoint. The others are all
unstable, with each having a single unstable point. For a suitably general bent wire, each local view,
with one exception, will be versally unfolded by moving the centre of projection. In this case, any
transversal to the viewing set becomes the base of a miniversal unfolding, and thus the dimension
of this transversal – i.e. the codimension of the viewing set – is equal to the Ae − codimension
of its parameterisation. (The exception is the quadruple point, whose cross ratio is not changed
by moving Q along the quadrisecant line.) There are three whose codimension is 1: the cusp, the
tacnode and the triple point. Their viewing sets, or more precisely the closure of their viewing sets,
separate the ambient R3.

RI RII RIII

Figure 2: The three Reidemeister moves – codimension 1 local views of a generic space curve

To pass from one knot projection to another, the centre of projection Q must pass through them.
This is essentially why they appear in knot theory, as the three Reidemeister moves.

By moving the centre of projection Q, we can perturb any given local view so that it becomes stable.
Within the original Milnor ball, the only singular points of the curve are simple crossings, which
emerge from the centre as we shift our viewpoint. Like any planar graph, the part of the curve
inside the Milnor ball is homotopy equivalent to a wedge of circles. Different stable perturbations
may have different numbers of circles, but, it happens that for every one of the singularities that is
versally unfolded in the family of projections, the maximal number of circles in the wedge is equal
to the codimension of the viewing set. This is an instance of the equality in Conjecture 1.1. You
can see the 1-cycle on the right in the pictures of RI and RII, and on both sides in RIII.
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Fourth−order tangency 

Third−order tangency 

of smooth branches

Tacnode + smooth

branch

First order cusp +

smooth branch

Second order cusp

of smooth branches

Third−order tangency 

+ smooth branch

Third order cusp Quadruple crossing

x 7→ (x2, x5)

x 7→ (x2, x7)

µI = 2

µI = 3

µI = 2 µI = 2 µI = 2

µI = 3 µI = 3 µI = 3

Figure 3: higher codimension local views of a generic space curve

The number of circles in a maximal wedge for the quadruple point, three, is one too many – the
viewing set is made up of lines which cut the curve four times, and so has codimension 2 – although
it is quasihomogeneous.

Exercise 1.2. Find maximal stable perturbations of each of the germs in Figure 3, and check that
in each case the image is homotopy-equivalent to a wedge of µI circles. Note that when the real
picture has the same homology as the complex, then the inclusion of one in the other is a homotopy
equivalence.

1.2 Slightly more technical detail

The most straightforward way of defining the Ae − codimension of a germ f : (Kn, S) → (Kp, 0)

(where K = R or C) is as the vector space dimension of

{ ddtft|t=0 : f0 = f}
{ ddt (ψt ◦ f ◦ ϕt) |t=0 : ψ0 = idKp , ϕ0 = idKn}

(1.1)

Both numerator and denominator here can be expressed more explicitly. Clearly, for each point x
in the domain,

d

dt
ft(x)|t=0 ∈ Tf(x)Kp.
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Thus x 7→ d
dtft(x)|t=0 is a map from (Kn, S) → TKp “over f ”: it gives the diagonal arrow in a

commutative diagram

TKn

��

df // TKp

��
Kn

;;vvvvvvvvv

f
// Kp

(1.2)

in which the vertical maps are bundle projections. If f̂ : (Kn, S) → (Kp, 0) is any map germ, then

ft(x) = f(x) + tf̂(x)

is a 1-parameter deformation whose derivative is f̂ . Thus the numerator in (1.1) is the free OKn,S

module on generators ∂
∂y1

, . . ., ∂
∂yp

. We denote it by θ(f).

In particular, the expressions ∂ϕt

∂t |t=0 and ∂ψt

∂t |t=0, in the denominator of (1.1), define germs of
vector fields on (Kn, S) and (Kp, 0) respectively. Denoting these by ξ and η we have

d(ψt ◦ f ◦ ψt)
dt

|t=0 = df ◦ ξ + η ◦ f.

Once again, every germ of vector field ξ and η can appear in this way, so the denominator in (1.1)
is equal to

{df ◦ ξ : ξ ∈ θKn,S}+ {η ◦ f : η ∈ θKp,0}

We write the operators ξ 7→ df ◦ξ and η 7→ η◦f as tf and ωf respectively, so finally the denominator
in (1.1) takes the form

tf(θKn,S) + ωf(θKp,0).

We call it the extended tangent space to the orbit of f , and denote it by TAef .The quotient

θ(f)

tf(θn) + ωf(θp)
(1.3)

is denoted by T 1
Ae
f . Writing this in terms of generators, this becomes

On{∂/∂y1, . . ., ∂/∂yp}
On{∂f/∂x1, . . ., ∂f/∂xn}+ f∗(Op{∂/∂y1, . . ., ∂/∂yp})

(1.4)

The Ae-codimension of f is the complex vector space dimension of (1.3). If this dimension is 0 then
f is “infinitesimally stable”; in fact from this it follows, by Martinet’s versality theorem (1.6 below)
that f is stable: every unfolding is trivial.

If F : (Cn × Cd, S × 0) → (Cp × Cd, (0, 0)), with F (x, u) = (f̃(x, u), u), is an unfolding of f , there
is a “relative version” of T 1

Ae
f , defined by parameterising all the ingredients of the quotient (1.4):

T 1 rel
Ae

F :=
On+d{∂/∂y1, . . ., ∂/∂yp}

On+d{∂f̃/∂x1, . . ., ∂f̃/∂xn}+ F ∗
(
Op+d{∂/∂y1, . . ., ∂/∂yp}

) (1.5)
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also written as
θ(F/Cd)

tf̃(θn+d/d) + ωf̃(θp+d/d)

Exercise 1.3. Check that reducing T 1 rel
Ae

F module md gives T 1
Ae
f , i.e.

T 1 rel
Ae

F ⊗O p+d
Od
md

=
T 1 rel

Ae
F

(u1, . . ., ud)T
1 rel
Ae

F
= T 1

Ae
f.

Example 1.4. The calculations here are purely formal, and pay no attention to the convergence
of power series. However, thanks to general approximation theorems which I will not go into, their
conclusions are correct.

(1) The germ in the centre of the first Reidemeister move can be parametrised by f(x) = (x2, x3).
Every power of x, except for x itself, can be written as a monomial in x2 and x3, so

ωf(θK2,0) + SpK

{(
x

0

)
,

(
0

x

)}
= θ(f).

Now

(
0

x

)
is not in TAef , since the order of the coefficient of ∂/∂y2 in every member of TAef

is at least 2. On the other hand,

tf

(
∂

∂x

)
=

(
2x

3x2

)

and it follows that only

(
0

x

)
is missing from TAef , and

TAef + SpK

{(
0

x

)}
= θ(f) (1.6)

and f has Ae-codimension 1.

(2) For a multi-germ f : (Kn, S) → (Kp, 0) with S = {s1, . . ., sk}, we denote by fj, for j = 1, . . ., k,
the associated mono-germs (Kn, sj) → (Kp, 0). Elements of θ(f) can be represented by p× k
matrices, with the j’th column representing the elements of θ(fj). For example, consider the
bi-germ

f :

{
s 7→ (s, 0)

t 7→ (0, t)

parameterising a transverse crossing of two immersed branches. It is infinitesimally stable.
To see this, observe that if a, b, c and d all vanish at 0 then the element(

a(s) c(t)

b(s) d(t)

)
(1.7)
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of θ(f) is equal to

ωf

(
(y1) + c(y2)

b(y1) + d(y2)

)
,

while if a0, b0, c0, d0 are arbitrary constants then

tf(a0 − c0, d0 − b0) + ωf

(
c0

b0

)
=

(
a0 c0

b0 d0

)
.

This completes the proof of infinitesimal stability.

(3) Consider the perturbation ft : x 7→ (x2, x3 − tx) of the germ f in Example (1) above; it is
an immersion, and for real t > 0, or any complex t 6= 0, it has one double point – the points
±
√
t have the same image, (t, 0). The two branches of the image meet transversely at (t, 0),

and otherwise ft is an embedding. Thus it is a stable perturbation of f . The image has the
homotopy type of a circle, as you can see in the right hand column of Figure 2.

Similar slightly more complicated calculations show that the codimension of Reidemeister moves II
and III is also 1, again equal to the rank of their vanishing homology.

Exercise 1.5. (i) Check this. (ii) Find Ae-codim f when f(x) = (x2, x5).

Before going on, I point out that the reason that the sAe codim of f is the number of parameters
needed for a miniversal unfolding of f is the following versality theorem, proved by Jean Martinet
in [Mar77] (and more accessibly published in [Mar82]). Here K is R or C.

Theorem 1.6. An unfolding F : (Kn ×Kd, S × {0}) → (Kp ×Kd, (0, 0)) of f : (Kn, S) → (Kp, 0),
(K = R or C), F (x, t1, . . ., td) = (ft(x), u), is Ae-versal if and only if the images in θ(f)/TAef of
the initial velocities ∂ft/∂ti|t=0, i = 1, . . ., d, span it as a K-vector space.

Versality of F (x, t) = (ft(x), t) means that every unfolding G(x, u) of f is parameterised-equivalent
to an unfolding induced from F by a map of parameters u 7→ t(u). It follows that every perturbation
of f is equivalent to ft for some t.

Note that from the versality theorem it follows that if f is infinitesimally stable then it is stable.

A versal unfolding contains every possible perturbation of f , up to equivalence; if f has a stable
perturbation at all, then the set of parameters t of parameter values t for which ft is stable is the
complement of an analytic subset, the bifurcation set. In Mather’s nice dimensions, the bifurcation
set is a proper analytic subset of the parameter space of the unfolding. In the complex case this
subset does not separate the parameter space, so any two good parameter values t0 and t1 can be
joined by a path avoiding the bifurcation set. From this it follows that ft0 and ft1 are topologically
equivalent, thus proving the (topological) uniqueness of the stable perturbation over C.
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There are five “Reidemeister moves” – Ae − codimension 1 map-germs - for mappings from 2-space
to 3-space. They were first described by Victor Goryunov in [Gor91]. I list them here, and in
each case describe a 1-parameter versal unfolding, which the reader can check by finding a basis for
θ(f)/TAef and applying Theorem 1.6. They are

(1) The S1 singularity (birth of two Whitney umbrellas), parameterised by

(x, y) 7→ (x, y2, y3 ± x2y).

Here, as in (2), the two forms, distinguished by ± in the third component, are inequivalent over
R but equivalent over C. The unfolding F (x, y, t) = (ft(x, y), t), with ft(x, y) = (x, y2, y3 ±
x2y + ty), is Ae- versal.

(2) The Morse tangency (the surface equivalent of the tacnode RII), a bi-germ parameterised by{
(x1, y1) 7→ (x1, y1, 0)

(x2, y2) 7→ (x2, y2, x
2
2 ± y2

2)

A versal unfolding on parameter u is obtained by adding the unfolding parameter t to the
third component of f1 (or of f2).

(3) The degenerate triple point, parameterised by
(x1, y1) 7→ (x1, y1, 0)

(x2, y2) 7→ (0, x2, y2)

(x3, y3) 7→ (x3 − y2
3, y3,−x3 − y2

3)

Here three immersed surfaces meet two-by-two transversely, with each tangent to the curve
of intersection of the other two. The unfolding in which f3 is modified to f3,t(x3, y3) =

(x3 − y2
3 + t, y3,−x3 − y2

3 + t) is Ae-versal.

(4) The umbrella with an immersed plane passing through it, parameterised by{
(x1, y1) 7→ (x1, y

2
1, x1y1)

(x2, y2) 7→ (x2,−x2, y2)

A versal unfolding is obtained by adding t to the second component of f2.

(5) The quadruple point, in which four immersed planes meet, with each three in general posi-
tion. The three coordinate planes and a fourth plane with equation u + v + w = 0 can be
parameterised by 

(x1, y1) 7→ (0, x1, y1)

(x2, y2) 7→ (x2, 0, y2)

(x3, y3) 7→ (x3, y3, 0)

(x4, y4) 7→ (x4, y4,−x4 − y4)

This is versally unfolded by adding (t, t, t) to f4.
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As Goryunov’s drawings show, each one (taking the positive variant in the first and second case,
where there is a choice of sign) can be perturbed to a mapping whose image is a homotopy 2-sphere.

crosscaps
on image

f

points of fu
Non−immersive

u

Figure 4: Images of stable perturbations of the five Ae-codimension 1 singularities of maps from
surfaces to 3-space.

Let gt be a defining equation of one of the images in Figure 4, obtained by perturbing the defining
equation g0 of the corresponding Ae–codimension 1 germ. The image, g−1

t (0), encloses a chamber.
Because the chamber is compact, gt must have a local maximum or minimum in its interior. In
the stable images you found in Exercise 1.2, the plane curve encloses µI plane chambers, and inside
each one, once again, there is a local maximum or minimum. It turns out that in each case there
is precisely one critical point in the interior of each chamber, and it is non-degenerate, though this
is not obvious. An extension of this crucial fact to the complex domain gives us the means to
determine the value of µI(f):

Theorem 1.7. (D. Siersma, [Sie91]) Let f : (Cn, S) → (Cn+1, 0) be A -finite. Then µI(f) is equal
to the sum of the Milnor numbers of the critical points of gt which move off the image hg−1

t (0) as
the parameter t moves away from 0. In particular, if all the critical points are non-degenerate, then
µI = number of critical points. 2

The proof shows that up to homotopy, each non-degenerate critical point contributes an n-sphere
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to the image of a stable perturbation of f . The argument is just Morse theory, and uses the fact
that a non-degenerate critical point of a holomorphic function g is also a non-degenerate critical
point of its modulus |g|, which is therefore a (real) Morse point in the usual sense. The index of this
critical point is always n+1 (i.e. one half of the real dimension of the ambient space), so passing the
critical value cj of |gt| glues in, to |gt|−1([0, cj)), an n+ 1-cell whose boundary is the n-sphere. The
argument applies to any deformation of a hypersurface singularity in which nothing special crosses
the boundary of the Milnor ball as the parameter moves away from 0. This is ensured by choosing
0 < |t| sufficiently small that during the deformation the hypersurface is always transverse to the
boundary of the ball.

In the real case, the index of a critical point which move off the image or discriminant may be
different from the ambient dimension. For example, in the drawing in Figure 2 of Reidemeister
move RII, in the stable perturbation shown on the left the critical point has index 1, and the
vanishing cycle is a 0-sphere – the image now has two contractible path components.

Exercise 1.8. Where is the vanishing cycle on the left in Reidemeister 1?

Theorem 1.7 also applies to the discriminant (set of critical values) of A -finite map-germ f :

(Cn, S) → (Cp, 0) with n ≥ p. The discriminant (set of critical values) of a stable perturbation
once again has the homotopy type of a wedge of spheres in middle dimension, in this case p − 1,
whose number, µ∆(f), is once again the sum of the Milnor numbers of the isolated critical points
which move off the discriminant as the parameter moves away from 0. In the next two lectures
we will look at discriminants alongside images, since the arguments are in most respects the same.
However in an important respect discriminants are easier to deal with than images, and the result
corresponding to the conjecture was proved in 1991:

Theorem 1.9. [DM91] For an A -finite map-germ f : (Cn, S) → (Cp, 0) with n ≥ p, and (n, p)

nice dimensions, µ∆(f) ≥ Ae − codimension(f), with equality if f is quasihomogeneous. 2

We will sketch the proof of this in the next lectures, because the same argument nearly works
to prove the conjecture, and indeed does work in the case of multi-germs of immersions:

Theorem 1.10. For an A -finite map-germ of immersions, f : (Cn, S) → (Cn+1, 0). µI(f) ≥
Ae − codimension(f), with equality if f is quasihomogeneous. 2

Note there is no restriction that (n, n+ 1) should be nice dimensions here.

The general case of the conjecture would be proved if we could plug one crucial gap.
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Figure 5: Discriminant of a stable perturbation of an Ae codimension 1 bi-germ, in which each
component mono-germ is a trivial unfolding of a Whitney cusp mapping. The discriminant of each
monogerm is drawn with dotted lines. Each has a (straight) cuspidal edge, drawn with a solid
line.The (curved) intersection of the two discriminants is also drawn with a solid line. The union
of the two discriminants is homotopy-equivalent to the curvilinear tetrahedron outlined by the solid
lines, which is, once again, a homotopy 2-sphere,

1.3 Evidence for the conjecture

(1) Duco van Straten and Theo de Jong proved it in case n = 2, in [dJvS91], and I found a second
proof ([Mon91]) for the same case, based on their idea of the homomorphism of Theorem 2.1
below. A variant of this method was used to prove it for the case n = 1 ([Mon95]).

(2) Kevin Houston gave an elegant proof in the case of map-germs of multiplicity 2, in [Hou98].
All such germs have corank 1, and for a corank 1 germ, the image Milnor number can be
calculated using the alternating homology of the multiple point spaces Dk(f). For a germ f

of multiplicity 2, only D2(f) is non-empty, and Houston showed a direct relation between the
rank of its alternating homology and T 1

Ae
f .

(3) Kevin Houston also showed that if f : (Cn, S) → (Cn+1, 0) satisfies the conjecture, and has a
1-parameter stable unfolding F (x, u) = (f̃(x, u), u), and if g ∈ Os defines an isolated hypersur-
face singularity then under mild additional hypotheses the “augmentation” AF,g of f defined
by AF,g(x, u) = (f̃(x, g(v)), v) also satisfies it. His theorem has recently been strengthened by
Raul Oset and Ignacio Breves.

(4) Kevin Houston and Neil Kirk classified simple singularities of maps C3 → C4, [HK99], and
verified the conjecture for all of them.

(5) Juan-José Nuño Ballesteros and Roberto Giménez Conejero ([GCNB23]) proved a weak version
of the conjecture: if Ae-codimension (f) > 0 then µI(f) > 0. In particular, the conjecture
holds for germs of Ae codimension 1.
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(6) Ayse Altintas Sharland gave three examples of A -finite quasihomogeneous germs of corank 3
(C3, 0) → (C4, 0) with and was able to check that they satisfied the conjecture. For example,

f(x, y, z) = (y2 + xz, x5 + yz + xy2, x6 + y3 + z2, x7 + x4z + xz2 + y2z)

has µI = Ae − codim = 18, 967, and another has µI = Ae − codim = 127, 295. Sharland
computed the Ae codimension using a method described below, and then calculated the im-
age Milnor number using a remarkable formula of Toru Ohmoto, ([Ohm15]) proved using
characteristic classes and Thom polynomials, which gives µI for a quasihomogeneous germ
(C3, 0) → (C4, 0) as a rational function of weights and degrees. Formulae similar to Ohmoto’s
have subsequently been found for n = 4 and n = 5, by Irma Pallarés and Guillermo Peñafort,
see [PPnS21], and can be used to check the conjecture for quasihomogeneous examples in
these dimensions – the Ae codimension can be calculated on a computer using a method de-
scribed in Subection 2.1.2 below. . Our joint paper [GM93] gave formulae (found by Victor
Goryunov) for the ranks of the alternating homology groups of the multiple point spaces of
a stable perturbation of a corank 1 map-germ; the sum of these ranks is the image Milnor
number. It would be an interesting project to calculate µI using these formulae for the cases
n = 2, 3, 4 and 5, and compare with the formulae of Ohomoto, Peñafort and Pallarés. In
their recent survey paper [NnBPS], Nuño and Peñafort organise these formulae in an intrigu-

ing way: the formula for each n has n parts, with the k’th part taking the form
Pn,k
k!

, for
k = 2, . . .n + 1, where Pn,k is a polynomial with integer coefficients. Are these n parts the
ranks of the alternating cohomology of D2(ft), . . ., D

n+1(ft)?

2 Moving closer to the target

There are three problems with expression (1.3) for T 1
Ae
f .

(1) It is very hard to calculate directly, and in fact quite a lot of machinery was developed in the
1970s and 1980s by Mather, Gaffney and du Plessis to make the calculation possible.

(2) It has a “mixed module” structure, with θ(f) and tf(θn) being On-modules, while θp is an
Op-module. Every On-module acquires an Op-module structure via f∗, so in particular T 1

Ae
f

is an Op-module. But this structure is hard to relate to the geometry of the image.

(3) T 1
Ae
f determines how the singularity can be deformed, much like the Tjurina algebra

On
Jg + (g)

of an isolated hypersurface singularity {g = 0}. To understand the topology its Milnor fibre
we need the jacobian algebra, On /Jg. The Tjurina algebra is a quotient of the Milnor algebra.
Calculating T 1

Ae
f as above, it does not seem to be the quotient of anything which will give us

the required information.

To overcome these difficulties, we look for a way to move T 1
Ae
f into the target.
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Lecture 2

2.1 Jacobian ideals

2.1.1 Notation

• Coordinates on the source Cn will always be denoted by x1, . . ., xn, and sometimes we will
denote the domain Cn by X.

• Coordinates on the target Cp will always be denoted by y1, . . ., yp, and sometimes we will
denote the target Cp by Y .

• Coordinates on the parameter space of an unfolding F : (Cn×Cd, S×{0}) → (Cp×Cd, (0, 0))

Cn will always be denoted by u1, . . ., ud, and sometimes we will denote the parameter space
Cd by U .

• If f : (Cn, S) → (Cp, 0), the critical set of f is the set Σ := {x ∈ Cn : dxf is not surjective}
(or Σf when we want to specify which map we are talking about) , and we denote its image
f(Σ) by D. Note that when n < p then Σ = Cn and D is the image of f .

• On is the ring of convergent power series in n complex variables, and thus the same as the
ring of germs at 0 of holomorphic functions in n complex variables.

• Composition with f induces a homomorphism f∗ : Op → On. We will also use f∗ to denote

the composite Op
f∗ // On

q // OΣ , where q is the passage to the quotient.

• The quotient homomorphism OD → OΣ induced by f∗ will be denoted by f∗.

• Given a function g ∈ Pp, its jacobian ideal is the ideal Jg generated by its first order partial
derivatives.

Let f : (Cn, S) → (Cp, 0), with n+ 1 ≥ p. The case where n+ 1 = p is what interests us most here,
but the case n ≥ p has a lot in common. For A -finite f , Σ is p − 1-dimensional, and f |Σ is finite
and generically 1-to-1 – just like an A -finite germ (Cn, S) → (Cn+1, 0).

For the moment, we treat the two cases together.

2.1.2 We put vector fields to work

To push T 1
Ae
f into the target, we use the homomorphism f∗(tg) originally suggested by Theo de

Jong and Duco van Straten for the case n + 1 = p (and used in [Mon91] to prove the conjecture
for the case n = 2). It is defined by differentiating the defining equation g of the discriminant or
image of f with respect to vector fields in θ(f). That is, each vector field along f , ξ =

∑
i αi∂/∂yi,

can be applied to g to give f∗(tg)(ξ) :=
∑

i αi(∂g/∂yi ◦ f) in f∗(Jg)OΣ. The αi are elements of
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On, but we consider them in the quotient ring OΣ, so f∗(tg)(ξ) is an OΣ- linear combination of the
(∂g/∂yj) ◦ f .

At various points in the arguments which follow, we ought to distinguish between f∗ : Op → OΣf
,

f∗ : Op → On and f∗ : OD → OΣf
. Mostly the difference is unimportant, but the last, with do-

main OD, will be denoted by f∗. This becomes important when we consider preimages: preimages
under f∗ are different from preimages under f∗.

Theorem 2.1. Let f : (Cn, 0) → (Cp, 0) be A -finite, with n + 1 ≥ p ≥ 2 (but excluding the case
(n, p) = (1, 2)), and let g be a reduced defining equation for the discriminant D. Then f∗(tg) passes
to the quotient to give isomorphisms

θ(f)

tf(θn)
→ f∗(Jg)OΣ (2.1)

θ(f)

TAef
→ f∗(Jg)OΣ

f∗(JgOD)
(2.2)

Remark 2.2. (1) Composition with f induces a monomorphism f̄∗ : OD → OΣ, and f̄∗(JgOD)

is a subset (though not an ideal) of OΣ, while f̄∗(Jg)OΣ is the ideal in OΣ that it generates. (Note
that the image of f∗ in OΣ is the same as the image of f∗ in OΣ. The difference only becomes
meaningful when we consider preimages.) But, crucially for the practical value of the proposition,
f∗(Jg)OΣ can also be thought of as an ideal of OD – more precisely, it is the isomorphic image
under f∗ of an ideal in OD (we explain this after the proof of the proposition) – so that the right
hand side in (2.2) is isomorphic to a quotient of two ideals of OD. Writing it in this way, it becomes

f∗
−1

(f∗(Jg)OΣ)

JgOD
. (2.3)

Even though this formula looks discouragingly complicated, computing with it is particularly easy.
For example, in addition to calculating f∗, Macaulay2 has a ‘preimage’ command which can be
applied to f∗−1 and makes calculating both numerator and denominator of (2.3) straightforward.

(2) At two points, the proof of 2.1 involves the notion of the depth of a module over a commutative
local ring. We will introduce it in a way that we hope will show its usefulness, and leave formal
definition to an appendix.

2.1.3 The conductor ideal

When R ⊂ S is an inclusion of rings, the conductor is the set (evidently an ideal) {r ∈ R : rS ⊂ R}.
Similarly if φ : R → S is a monomorphism of rings, the conductor ideal is {r ∈ R : φ(r)S ⊂ φ(R)}.
It is obvious from the definition that the conductor is also an ideal of S. We denote it by C . Its
relevance to us here is

Lemma 2.3. Let C denote the conductor of the monomorphism OD → OΣ. Then

16



(1) JgOD ⊂ C , and V (JgOD) = Dsing = V (C ).

(2) The zero-locus of C as an ideal in OΣ is the set

D2
1(f) := closure of {x ∈ Cn : there exists x′ 6= x such that f(x′) = f(x)}.

(3) When f : (Cn, S) → (Cn+1, 0), C is a principal ideal in On, and

(4) ([Pie79]) In this case, the quotient of (−1)j
∂g

∂yj
by

∂(f1, . . ., f̂j , . . .fn+1)

∂(x1, . . ., xn)
is independent of j,

and generates C as an ideal in On.

Proof of (1) and (2) (sketch) Any function coming from OD must take the same value at pairs
of points in Σ with the same image. The only way that multiplying any arbitrary function a ∈ OΣ

by h ◦ f can achieve this is that h ◦ f must vanish at all such points. In fact for A -finite f :

(Cn, S) → (Cn+1, 0) this is also a sufficient condition. The set of points in D with more than one
preimage is precisely the singular set of D. When p = n+ 1, but not when n ≥ p, C is radical and
C = I(Dsing). In both cases JgOD ⊂ C . 2

Exercise 2.4. (i) The Whitney cusp map (x, y) 7→ (x, y3+xy) is stable, and hence so is f(w, x, y) =

(w, x, y3 + xy). Find Σ, D and C and check that in this case C is not radical.

(ii) Check that for the stable germ (x, y) = (x, y2, xy), C is radical, and verify statement (4) of
Lemma 2.3 for this case.

Part (1) of the lemma justifies the statement in Remark 2.2 above that f∗(Jg)OΣ is the isomorphic
image of an ideal in OD.

Proof of Theorem 2.1

Step 1 For any point x ∈ Σ and vector v ∈ TxCn, dxf(v) is tangent to D. In case n ≥ p this can
be checked at fold points, which are dense. In case n + 1 = p it is obvious. In any case it follows
that f∗(tg)(tf(ξ)) = t(g ◦ f)(ξ) vanishes on Σ. Thus f∗(tg) : θ(f) → JgOn passes to the quotient
to define an epimorphism θ(f)/tf(θn) → JgOΣ.

Step 2 θ(f)/tf(θn) has depth greater than 0. To see this, consider the exact sequence

θn // θ(f)
tf // θ(f)

tf(θn)
// 0 (2.4)

where θn and θ(f) are free On-modules of rank n and p respectively. When n ≥ p, θ(f)/tf(θn)

has dimension p− 1 and hence is Cohen-Macaulay (i.e. its depth is equal to its dimension), by the
theorem of Buchsbaum-Rim [BR64], quoted as Theorem 5.5 below. So, it has depth p−1 > 0. When
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p = n + 1, f is a finite mapping, which implies that tf is injective. Thus (2.4) is a free resolution
of θ(f)/tf(θn), which therefore has projective dimension, as On-module, equal to 1, and hence
depth n − 1 > 0, by the Auslander–Buchsbaum Theorem (5.3 below) relating depth to projective
dimension.

Step 3: Because θ(f)/tf(θn) has positive depth, it has no submodule which is supported only at
the origin. This follows immediately from the definition of depth.

Step 4: Let K = ker f∗(tg) : θ(f)/tf(θn) → f∗(Jg)OΣ. We show that K, if not zero, is supported
only at 0. To do this we use the geometrical criterion for A -finiteness, that f must be stable outside
0. So consider the case where f is stable. There is a commutative diagram with exact rows

0 // Der(− logD) �
� //

=

��

θp
ωf //

=

��

θ(f)

tf(θn)

f∗(tg)

��

// 0

0 // Der(− logD) �
� // θp

tg // JgOΣ
// 0

(2.5)

Here ωf is just ωf followed by the projection to the quotient θ(f) → θ(f)/tf(θn). And Der(− logD)

is the Op-submodule of θp consisting of germs of vector fields tangent to D at its smooth points. It
is easy to show that that

Der(− logD) = {η ∈ θp : tg(η) ∈ (g)},

which proves exactness of the second row at θp. That Der(− logD) is the kernel of ωf is just the
statement that η ∈ θp is liftable via f (i.e. there exists ξ ∈ θn such that tf(ξ) = ωf(η)) if and
only if η ∈ Der(− logD). This is well known (see e.g. [MNnB22, Proposition 8.8]). Surjectivity of
ωf is due to the infinitesimal stability of f , and surjectivity of tg follows by commutativity of the
diagram, since f∗(tg) is clearly surjective.

Given the exactness of the rows and the fact that the first two vertical arrows are isomorphisms, the
kernel and cokernel of f∗(tg) are equal to 0. This completes the proof that (2.1) is an isomorphism.
That (2.2) is also an isomorphism follows, since the image of tg in JgOΣ is JgOD. 2

2.2 Expanding into the ambient Cp

Javier Fernández, Juanjo Nuño and Guillermo Peñafort in [FdBNnBPnS19], tackle problem (3) in
the list of at the start of Section 2 by expanding the quotient in (2.2) “into the ambient space” Cp;
they consider

f∗−1(f∗(Jg)OΣ)

Jg
. (2.6)

This is a quotient of two ideals of Op, whereas the quotient
f∗
−1

(f∗(Jg)OΣ)

JgOD
, isomorphic to T 1

Ae
f ,

is a quotient of two ideals of OD. To simplify notation we write the top line in (2.6) as Ig.
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Remark 2.5. We note that when g is quasihomogeneous, then g ∈ Jg, so that the natural epimor-
phism

f∗−1(f∗(Jg)OΣ)

Jg
→ f∗

−1
(f∗(Jg)OΣ)

JgOD

is an isomorphism. Thus dimC
Ig
Jg
≥ Ae − codim(f) with equality when f is quasihomogeneous.

Conjecture 2.6. (Fernández de Bobadilla, Nuño, Peñafort) When p = n + 1 and (n, p) are nice
dimensions then dimCIg/Jg = µI(f).

This conjecture implies the Mond conjecture.

Give an unfolding F : (Cn×Cd, (0, 0)) → (Cp×Cd, (0, 0)) of f whose discriminant has equation G,
there is a relative version of Ig/Jg, namely

Irel
G

J rel
G

:=
F ∗−1(F ∗(J rel

G )On+d))

J rel
G

,

where J rel
G =

(
∂G

∂y1
, . . .,

∂G

∂yp

)
(i.e. we omit the partial derivatives with respect to the unfolding

parameters). A difficulty which surfaces here is that it is not obvious that reducing Irel
G /J rel

G modulo
md gives Ig/Jg, i.e. that

Irel
G /J rel

G

(u1, . . ., ud)I
rel
G /J rel

G

=
Ig
Jg

(2.7)

(or equivalently, that
Irel
G

J rel
G

⊗Op+d

Od
md

=
Ig
Jg

). Nevertheless, Nuño and Peñafort show in [NnBPS]

Lemma 2.7. If F is a stable unfolding of an A -finite map-germ (Cn, S) → (Cn+1, 0), then

(1) (2.7) holds, and hence

(2)
Irel
G

Jrel
G

is a finitely generated Od-module of dimension d, with dimC
Ig
Jg

generators. 2

Note that (2) follows from (1) by the Preparation Theorem and Nakayama’s Lemma.

The truth or falsity of their conjecture rests on whether Irel
G /J rel

G is a free module over Od. In
the classical theory of isolated hypersurface singularities, freeness of the relative jacobian algebra
means that a critical point with Milnor number µ splits on deformation into µ non-degenerate
critical points (this is “conservation of multiplicity”), and the role of freeness would be similar here.
To prove that Irel

G /J rel
G is free over Od, it is necessary to show first that it is Cohen-Macaulay when

considered as an On+1+d-module. This still remains conjectural.
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The notion of Cohen-Macaulay module is crucial in this story, and will surface repeatedly in what
follows. My view on how to understand a new definition is “see what it does for you”. I hope
that in these lectures you will see how the Cohen-Macaulayness of certain modules associated to
an unfolding implies conservation of multiplicity and allows us to calculate µI(f (or µ∆(f) when
n ≥ p) and compare it with the Ae-codimension of f .

The proof of Lemma 2.7(1) does not work for the case n ≥ p, and so to deal with that, in Subsection
2.4 we end up making use of a different “expansion into the ambient space” with a different relative
module, of a more traditional kind, for which it is obvious that it reduces appropriately modulo md.

As far as possible, we will continue to develop together the arguments for the conjecture, and for
Theorem 1.9. This will help to show clearly where the difficulty for the conjecture is.

Lemma 2.8. (1) If F is a stable unfolding then
Irel
G

Jrel
G

=
JG + (G)

Jrel
G

.

(2) If in addition G ∈ JG then
Irel
G

Jrel
G

=
JG

Jrel
G

.

Proof For any unfolding F , J rel
G OΣF

= JGOΣF
. For since D is the image of ΣF , G ◦ F = 0 on

ΣF , and thus dG ◦ dF = 0 on ΣF . Differentiating with respect to ui, and writing the unfolding F
as (f̃(x, u), u), at points of ΣF we therefore have

0 =
∂(G ◦ F )

∂ui
=

p∑
j=1

(
∂G

∂yj
◦ F
)
∂f̃j
∂ui

+
∂G

∂ui
◦ F,

showing that
∂G

∂ui
◦ F ∈ J rel

G OΣF
.

Since F is stable, JGOΣF
= JGODF

, by Theorem 2.1. This implies

Irel
G = (F ∗)−1(J rel

G OΣF
) = (F ∗)−1(JGOΣF

) = JG + (G). 2

It will be useful in what follows to assume that G ∈ JG . This can always be arranged; if G is
quasihomogeneous then it is easy to show that G ∈ JG, while in general, we can replace the stable
unfolding F by F × idC (which is still stable), and, denoting the extra unfolding parameter by t,
replace G by G0 = etG, and then use the fact that G0 = ∂G0/∂t ∈ JG0 . An equation G for which
G ∈ JG is called a good defining equation for D.

To simplify our notation we write Cn = X,Cp = Y and Cd = U , and denote the projection
Y × U → U by π.

Lemma 2.9. If F is a stable unfolding then
JG

Jrel
G

' θ(π)

tπ(ker dG)
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Proof JG is the image of dG : θY×U → OY×U , so

JG '
θY×U
ker dG

and it follows that
JG

J rel
G

' θY×U

ker dG+OY×U{ ∂
∂y1

, . . ., ∂
∂yp
}
.

Now θY×U = OY×U{ ∂
∂y1

, · · ·, ∂
∂yp

, ∂
∂u1

, · · ·, ∂
∂ud
}, so cancelling the generators ∂

∂yj
we are left with

JG

J rel
G

'
OY×U{ ∂

∂u1
, · · ·, ∂

∂ud
}

tπ(ker dG)
2

– where for a vector field ξ :=
∑

j aj(y, u)∂/∂yj +
∑

i bi(y, u)∂/∂ui, tπ(ξ) is just
∑

i bi(y, u)∂/∂ui.

The lemma suggests that to show that JG/J rel
G is Cohen Macaulay, we need to know something

about ker dG. First we say something about the slightly larger module of vector fields

Der(− logD) := {ξ ∈ θp+d : dG(ξ) ∈ (G)}, (2.8)

mentioned in Step 4 of the proof of Theorem 2.1. It is the set of ambient vector field germs which
are tangent to D at its smooth points. Clearly ker(dG) ⊂ Der(− logD): ker(dG) is the set of vector
fields tangent to all the level sets of G.

Lemma 2.10. If F : (Cn × Cd, S × {0}) → (Cp × Cd, (0, 0)) is a stable unfolding and either

(i) n+ 1 = p and f (and therefore also F ) is a multi-germ of immersions, or

(ii) n ≥ p and (n, p) are nice dimensions, then

(1) Der(− logD) is a free Op+d–module on p+ d generators, and

(2) If χ is a vector field such that dG(χ) = G (so that G is a good defining equation for D) then
Der(− logD) splits as a direct sum of ker(dG) and the set of Op+d-multiples of χ, so that

(3) in this case ker dG is a free Op+d– module on p+ d− 1 generators.

Proof (1) In both cases, Der(− logD) is the kernel of ωF : θp →
θ(F )

tF (θn)
. When s ≥ t then, since

θ(F )

tF (θn)
has depth t− 1, as noted in Step 2 of the proof of Theorem 2.1, it has projective dimension

1, by the Auslander-Buchsbaum theorem (5.3 below). It follows that the kernel of ωF is free. In
case (ii), D must be a normal crossing divisor (NCD), since in a stable multi-germ of immersions,
the images of the component immersions must meet in general position. It is well known that NCDs
are free divisors. Kyogi Saito showed in [Sai80], where he introduced the notion of free divisor, that
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a hypersurface germ B ⊂ Cq is a free divisor if and only if Der(− logB) is generated by precisely
q vector field germs. This proves (1). I leave the easy proof of (2) as an exercise, and (3) follows
from (1) and (2). 2

Exercise 2.11. K.Saito showed in [Sai80] that a hypersurface germ D at a point x0 ∈ Cq is a
free divisor if and only if there are germs of vector fields χ1, . . ., χq ∈ Der(− logD)x0 such that
the determinant of the q × q matrix of their coefficients is a reduced equation for D. In this case,
χ1, . . ., χq form a basis for Der(− logD). To do (i) Find a basis for Der(logD) when D is the NCD
{(x1, . . ., xq) ∈ Cq : x1· · ·xq = 0}. (ii) Do the same whenD is the NCD {(x1, . . ., xq) ∈ Cq : x1· · ·x` =

0} with ` < q. (iii) Do the same when D is the plane curve germ {(x1, x2) ∈ C2 : xp1− x
q
2 = 0} with

p, q coprime.

Theorem 2.12. If F : (Cn × Cd, S × {0}) → (Cp × Cd, (0, 0)) is a stable unfolding of an A -finite
germ, and either (i) n+ 1 = p and f (and therefore also F ) is a multi-germ of immersions, or

(ii) n ≥ p and (n, p) are nice dimensions, then

(1)
JG

Jrel
G

is a Cohen-Macaulay module of dimension p+ d− 1, and

(2)
JG

Jrel
G

is a free module over Od.

Proof (1) By Lemma 2.10, ker dG is free of rank p+ d− 1, and θ(π) is free of rank d, so
JG

J rel
G

has

a presentation

Op+d−1
p+d → Odp+d →

JG

J rel
G

→ 0.

The theorem of Buchsbaum and Rim ([BR64]) already quoted in the proof of Theorem 2.1 says that
if

Oa → Ob → M → 0

is a presentation of an O-module M , with a ≥ b, then codim supp(M) ≤ a− b+ 1, and if equality

holds then M is Cohen-Macaulay. To use this here, we have to show that codim supp
JG

J rel
G

= p. We

already know that it is no greater than p, so we have just to show that it is no less than p. In other
words, we have to show that its dimension is no greater than d. This will follow if we can show that

the projection π : Cp × Cd → Cd is finite-to-one on supp
JG

J rel
G

. This is equivalent to showing that

dimC

(
Irel
G /J rel

G

mdI
rel
G /J rel

G

)
<∞.

In the case where f : (Cn, S) → (Cn+1, 0) is a multi-germ of immersions, this follows from the fact
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(Lemma 2.6(1)) that
Irel
G /J rel

G

mdI
rel
G /J rel

G

' Ig
Jg
.

We postpone proof that π is finite on supp JG/Jrel
G for the case n ≥ p until after introducing an

alternative to Ig/Jg in the next section.

(2) Because π is finite on its support, JG/J rel
G is a finite module over Od (see 5.6 below). Its depth

as Od-module is the same as its depth as Op+d–module ([BH93, Exercise 1.2.26]), namely d (recall
that JG/J rel

G is Cohen Macaulay, and thus its depth is equal to its dimension). By the Auslander
Buchsbaum theorem (quoted as Theorem 5.3 below), its projective dimension is 0 i.e. it is free as
an Od-module. 2

2.3 Proof of Theorem 1.9 (leaving a small gap), and Conjecture 1.1 for multi-
germs of immersions

Once a representative F : X ×U → Y ×U of F is chosen, JG and J rel
G extend uniquely to coherent

sheaves of OY×U -modules on Y × U . We continue to use JG and J rel
G to denote these sheaves,

but take care now to specify base points, so the old ideals JG and J rel
G in Op+d = OCp×Cd,(0,0)

become JG,(0,0) and J rel
G,(0,0). The quotient sheaf

JG

J rel
G

is likewise coherent, with stalk at (0, 0) equal

to
JG,(0,0)

J rel
G,(0,0)

.

To lighten the notation, we denote the coherent sheaf JG/J rel
G by M .

By the finiteness of dimCM(0,0/mdM(0,0), π is a finite mapping on supp M , so the push forward to
U of M is a coherent sheaf of OU -modules, denoted π∗(M). As with any finite push-forward, for
each u ∈ U we have

π∗(M)=

⊕
(y,u)

M(y,u) (2.9)

where the direct sum is over points (y, u) ∈ π−1(u) ∩ suppM – there are only a finite number of
these. If the representative F is good, then (0, 0) is the only point of suppM in π−1(0). Thus
the stalk of π∗(M) at 0 is M(0,0) = JG,(0,0)/J

rel
G,(0,0. By Theorem 2.12, this is a free Od-module,

with rank equal to dimC M(0,0)/mdM(0,0 by Nakayama’s Lemma. Freeness is an open property of
a coherent sheaf, so shrinking U if necessary, π∗(M) is a free sheaf of OU -modules, whose rank
everywhere is the same as the rank of π∗(M)(0,0). Thus

dimC
(
M(0,0)/mdM(0,0

)
=
∑
y

dimC
(
M(y,u)/md,uM(y,u)

)
(2.10)

(we attach a subindex u to md on the right, because we are referring to the maximal ideal in OCd,u)
As before, the sum here is over points (y, u) ∈ π−1(u) ∩ supp M .
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Let u be a parameter value outside the bifurcation set – i.e. such that fu is stable. Let gu = G ◦ iu,
and let Du = g−1

u (0). We divide the sum (2.10) into two parts: where (y, u) ∈ Du, and where
(y, u) /∈ Du.

For each point y /∈ Du,
M(y,u)

md,uM(y,u)
=
OY×U,(y,u)

J rel
G(y,u)

+ mU,u
'
OY,y
Jgu

Thus ∑
y/∈Du

M(y,u)

md,uM(y,u)
=
∑
y/∈Du

dimC
OY,y
Jg◦iu

(2.11)

The right hand side in (2.11) is µI (or µ∆ in the case n ≥ p), by Siersma’s result, Theorem 1.7.

At each point y ∈ Du, we claim M(y,u) = 0. For we are assuming fu is stable. In the nice
dimensions, all stable germs are quasihomogeneous, and so by Lemma 2.15 (which we prove shortly!)
M(y,u)/md,uM(y,u) = T 1

Ae
fu = 0.

Thus,

∑
y

dimCM(y,u) =
∑

y/∈D(fu)

dimCM(y,u) =

{
µ∆ if n ≥ p
µI if n+ 1 = p and f is a multi-germ of immersions

2

2.4 Damon’s method

Jim Damon showed in [Dam91] how to calculateAe-codimension by what at first sight is a completely
different method. If f : (Cn, S) → (Cp, 0) has stable unfolding F : (Cn × Cd, S × {0}) → (Cp ×
Cd, (0, 0)) then there is a commutative diagram (from which I omit the base-points)

Cn × Cd F // Cp × Cd

Cn
j

OO

f
// Cp

i

OO (2.12)

in which the vertical arrows are just inclusions x 7→ (x, 0) and y 7→ (y, 0). This is a fibre square:
the Cn in the bottom left is the fibre product of the domain of F and the domain of i over their

shared

target Cp × Cd, and thus the maps
f
//

j

OO

are determined by the maps
F //

i

OO

Everything about f must therefore be calculable from information about F and i. Consider the
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diagram
col. # 2 1 0

0 0

0 // tπ(Der(− logD)) �
� //

OO

θ(π) //

OO

0

0 // Der(− logD) �
� //

tπ

OO

θY×U
ωF //

tπ

OO

θ(F )

tF (θX×U )
//

OO

0

0 // Der(− logD)/U �
� //

OO

θY×U/U
ωF //

OO

θ(F/U)

tF (θX×U/U )

'

OO

// 0

0

OO

0

OO

0

OO

(2.13)

in which θY×U/U means vector fields on Y ×U with zero component in the U direction, and similarly
θ(F/U) and Der(− logD)/U . A diagram chase shows

θ(π)

tπ(Der(− logD))
' θ(F/U)

tF (θX×U/U ) + ωF (θY×U/U )
(2.14)

(that is, the first homology of the top complex is isomorphic to the 0’th homology of the bottom
complex). The right hand side here is the relative module T 1 rel

Ae
F , for which we know that

T 1 rel
Ae

F

mdT
1 rel
Ae

F
' T 1

Ae
f (2.15)

On the other hand, since the left hand side in (2.14) is isomorphic to

θp+d
Op+d{∂/∂y1, . . ., ∂/∂yp}+ Der(− logD)

it follows that

M(0,0)/mdM(0,0) =
θp+d

Op+d{∂/∂y1, . . ., ∂/∂yp}+ Der(− logD) + mdθp+d
(2.16)

By dividing by mdθp+d we are restricting everything to Cp × {0}, so (2.16) can be rewritten as

θ(i)

Op{∂/∂y1, . . ., ∂/∂yp}+ i∗(Der(− logD))
. (2.17)

where i is the inclusion in (2.12). Finally, we note that Op{∂/∂y1, . . ., ∂/∂yp} = ti(θp), so that
(2.17) becomes

θ(i)

ti(θp) + i∗(Der(− logD))
(2.18)
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It follows that the right hand sides in (2.15) and (2.18) are isomorphic:

T 1
Ae
f ' θ(i)

ti(θp) + i∗(Der(− logD))
. (2.19)

Damon showed in [Dam91] that (2.19) holds for any germ f obtained by transverse fibre product
of i and F , with F stable but not necessarily an unfolding, and i not necessarily an immersion.

Exercise 2.13. Carry out the diagram chase to obtain the isomorphism (2.14) from diagram (2.13),

and, for the class of
∑

i αi
∂

∂ui
in

θ(π)

tπ(Der(− logD))
, find an explicit expression for its image in

θ(F/U)

tF (θX×U/U ) + ωF (θY×U/U )
.

2.5 We apply Damon’s method to fill the gap in the proof of Theorem 1.9

Recall that
Irel
G

J rel
G

' JG

J rel
G

' θ(π)

tπ(ker dG)
.

Applying the argument of the last paragraph to θ(π)/tπ(ker dG), we get

θ(π)

tπ(ker dG)

/
md

(
θ(π)

tπ(ker dG)

)
' θ(i)

ti(θp) + i∗(ker dG)
(2.20)

where i : (Cp, 0) → (Cp+d, 0) induces f from the stable unfolding F by transverse fibre product, as
described in the last subsection. Thus, we have a replacement for the conclusion of Lemma 2.7:

Lemma 2.14.

Irel
G /Jrel

G

md(I
rel
G /Jrel

G )
' θ(i)

ti(θp) + i∗(ker dG)
. 2

There is an obvious epimorphism

θ(i)

ti(θp) + i∗(ker dG)
→ θ(i)

ti(θp) + i∗(Der(− logD))
. (2.21)

Lemma 2.15. When f is quasihomogeneous then (2.21) is an isomorphism.

Proof If f is quasihomogeneous then we can choose its stable unfolding F to be quasihomogeneous
also, though not necessarily with all weights positive. But in any case there is an Euler vector field
χE in Der(− logD) for which tG(χE) = G, and thus

Der(− logD) = ker dG+Op+d χE .

If χe is the corresponding Euler vector field on Cp then ti(χe) = χE ◦ i so that

ti(θp) + i∗(Der(− logD)) = ti(θp) + i∗
(
(ker dG). 2
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Lemma 2.16. If F is a stable unfolding of an A -finite germ f : (Cn, S) → (Cp, 0), with n ≥ p or

n+ 1 = p, and (n, p) are nice dimensions, then
JG

Jrel
G

is finite over Od

Proof We have just to show that
(
supp

JG

J rel
G

)
∩ Cp × {0} = {(0, 0)}. Because f is A -finite, f is

stable outside 0, so
(
supp T 1 rel

Ae
F
)
∩ Cp × {0} = {(0, 0)}. Since we are in the nice dimensions, at a

stable point y of f , f is quasihomogeneous with respect to suitable coordinates, so by Lemma 2.15,

(y, 0) /∈ supp
JG

J rel
G

. Hence (0, 0) is the only point in supp
(
JG

J rel
G

)
∩ Cp × {0}. 2

This completes the proof of Theorem 1.9.

3 The hard part of Conjecture 1.1 still remains unproved – but is
surely true

If f : (Cn, S) → (Cn+1, 0) is A -finite but not a multi-germ of immersions, then the image, D, of
a stable unfolding is not a free divisor, so the argument of Theorem 2.12 fails. For example, the
simplest non-immersive stable germ is the parameterisation of the Whitney umbrella,

f(x1, x2) = (x1, x
2
2, x1x2)

Exercise 3.1. Find and equation for D in this case, and go on to find generators of Der(− logD)

for this germ, and check that D is not a free divisor (see Exercise 2.11). It is easiest to start by
finding generators for the submodule ker dg, where g is a reduced defining equation for D.

Nevertheless, the fact that the conjecture holds in all of the examples we know means that in every
case multiplicity is conserved, which, in turn, means that the module JG/J rel

G must be Cohen-
Macaulay, even though no theorem that we are aware of says that it should be. So what can be done?
I referred above to the proof of Cohen-Macaulayness of Irel

G /J rel
G as “numerological". It is based on

the theorem of Buchsbaum-Rim, that gives a sufficient numerical condition, the codimension of
the support of the cokernel, M , of an O-linear map Oa → Ob, for M to be Cohen-Macaulay. We
applied it in the proof of Theorem 2.12, arguing that when D is a free divisor and G is a good
equation then tπ(ker dG) has p+ d− 1 generators and so θ(π)/tπ(ker dG) has presentation

Op+d−1 → Od → θ(π)

tπ(ker dG)
→ 0.

When ker dG needs more than p + d − 1 generators (i.e. more than n + d in the case p = n + 1),

the Buchsbaum-Rim theorem would require the support of
JG

J rel
G

to have codimension greater than

p, which it does not have. Nevertheless, for quasihomogeneous germs, the conjectured equality
µI = Ae-codimension can only hold if M := JG/J

rel
G is Cohen-Macaulay. If depthOn+d+1

M were

27



less than d then M would not be free as Od-module, from which it would follow that µI(f) < Ae–
codim(f). Thus, all of the examples of quasihomogeneous germs satisfying the conjecture also
support the conjecture that J rel

G /JG is Cohen-Macaulay.

4 Speculations

To overcome the difficulty, two possibilities suggest themselves.

The first is to seek a presentation of
JG

J rel
G

, in which ker dG is replaced by a submodule with only

n+ d generators.

The second is to return to the definition of Cohen-Macaulay module, and look for other reasons

why
JG

J rel
G

might be Cohen-Macaulay. This is what we now do, briefly and inconclusively.

Proposition 4.1. Suppose that F : (Cn×Cd, S×0) → (Cn+1×Cd, (0, 0) is an unfolding of A -finite
germ f , that G is a reduced equation for the image D of F , and that JG/Jrel

G has dimension d. Then
JG/J

rel
G has depth d if and only if the unfolding parameters u1, . . ., ud form a regular sequence on

M .

Proof M/(u1, . . ., ud)M is a finitely generated module over the 0-dimensional ring Od /md = C,
so its dimension is 0, and Proposition 5.4(1) applies. 2

So to prove the conjecture one could try directly to show that u1, . . ., ud form a regular sequence
on JG/J rel

G . If this is true, then u1 is regular on JG/J rel
G ⊗ (Od /(u2, . . ., ud) so as an opening step

it would be sensible to try to seek reasons why in a 1-parameter unfolding F , whose image has
equation G, the parameter might be regular on Irel

G /J rel
G . Perhaps the fact that the unfolding is

not trivial can be used in some way to show that the unfolding parameter is regular. Or could the
semi-universal property of a versal unfolding play a role? It may be that to focus on the numerology
is a distraction.

4.1 More on non-linear sections of images and discriminants

In Subsection 2.4 we thought of the map f and its deformations in a different way: a map A -
equivalent to f is obtained from a stable map F by means of a fibre diagram (from which we omit
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base points)

CN F // CP

CN ×CP Cp

pr1

OO

pr2 // Cp
i

OO

Cn
'
OO

f

99sssssssssss

(4.1)

where i can be any germ (not necessarily an immersion) which is transverse to F , so that the fibre
product is non-singular, and N − P = n − p, so that the fibre product has dimension n. Writing
Df and DF for the images or discriminants of f and F , we have Df = i−1(DF ). A perturbation ft
of f is obtained by perturbing the map i to it; then ft is stable if and only if it is transverse to the
distribution Der(− logDF ) at 0. This is simply because

T 1
Ae
f ' θ(i)

ti(θp) + i∗(Der(− logDF )
, (4.2)

as we saw in Subsection 2.4, and because a simple application of Nakayama’s lemma shows that the
RHS in (4.2) is 0 if and only if

T0CP

d0i(T0Cp) + T log
0 DF

= 0, (4.3)

where T log
0 DF is the “logarithmic tangent space to DF at 0”,

T log
0 DF := {χ(0) : χ ∈ Der(− logD)}.

Exercise 4.2. Prove that (4.2) is 0 if and only if (4.3) holds .

Damon generalised this idea by simply considering the right hand side of the diagram (4.1); that is,
we fix some hypersurface D of CP and consider its preimage i−1(D) under a map i : Cp → CP . By
perturbing i to a nearby map it which is logarithmically transverse to D, we obtain i−1

t (D), which
Damon calls a “singular Milnor fibre” of i−1(D).

In such a situation, following Jim Damon, we can define a T 1 in a natural way, as the quotient in
(4.2), and consider the homology of the singular Milnor fibre. The argument sketched in the proof
of Theorem 1.7 shows that the singular Milnor fibre has the homotopy type of a wedge of spheres
of dimension p− 1, and the general conjecture is that the number of these spheres is the dimension
of

θ(i)

ti(θp) + i∗(kerdG)
, (4.4)

where G is the equation of the hypersurface D. In the literature ker dG is often denoted by
Der(− logG) to emphasise its relation with Der(− logD). Bill Bruce, Victor Goryunov, Jim Damon
and others have studied “matrix singularities”, where CP is the (linear) space of m×m matrices, or
symmetric matrices, or skew-symmetric matrices, and D is the hypersurface of singular matrices.

29



In all of these cases, the singular locus of D is Cohen-Macaulay, in the sense that OP /JG is a
Cohen-Macaulay ring – as it is when D is a free divisor.

Theorem 4.3. ([GM05]) Let D ⊂ CP be a hypersurface, with defining equation G, such that
OP /JG is Cohen Macaulay, and of codimension m0 in CP . Suppose that i : (Cp, 0) → (CP , 0) is
logarithmically transverse to D outside 0 and p = m0 or p = m0−1. Then the singular Milnor fibre
of i−1(D) has the homotopy type of a wedge of µ∆(i) spheres of dimension p− 1, where µ∆(i) is the
vector space dimension of (4.4).

In [Gor21, Conjecture 6.9], Goryunov makes the following conjecture:

Conjecture 4.4. Let i : (Cp, 0) → Matn be a germ of any of the three types of matrix families.
Assume that p is at least the codimension of the singular locus of the discriminant D in Matn, and
i is logarithmically transverse to D outside 0. Then µ∆(M) is equal to the vector space dimension
of (4.4).

Note that when m0 = 2, then D is a free divisor and the arguments used above prove the
conjectured equality.

4.2 Lie groups of equivalences

Given a subvariety V ⊂ CP , Jim Damon introduced the subgroup KV of the group K acting on
the space of germs (Cp, 0) → (CP , 0). Two map-germs i0, i1 : (Cp, 0) → (CP , 0) are KV -equivalent
if there exist diffeomorphisms Φ of (Cp × CP , (0, 0)) and ϕ of (Cp, 0) such that

(1) Φ maps π1 ◦ Φ = ϕ ◦ π1, (i.e. Φ lifts ϕ),

(2) Φ maps Cp × V to itself (i.e. Φ preserves V )

(3) Φ induces a diffeomorphism graph(i0) → graph(i1).

He shows in [Dam91] that the tangent space to the KV -orbit of i in the space of germs, TKV i, is

ti(mpθp) + i∗(Der(− log V )),

and the extended tangent space TKV,ei is

ti(θp) + i∗(Der(− log V ).

Changing condition (2) in the definition above to
(2’) G ◦ π2 ◦ Φ = Γ ◦ π2

gives the group KG, and the tangent space and extended tangent space for KG are

ti(mpθp) + i∗(Der(− logG)) and ti(θp) + i∗(Der(− logG)
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respectively.

Could the fact that the T 1, and the conjectured formula for µI and µ∆, can all be decribed in
terms of Lie groups of equivalences provide the missing ingredient needed to prove the conjectures?
Perhaps the fact that the modules involved are tangent spaces and quotients of tangent spaces gives
them special properties which imply conservation of multiplicity.

5 Appendix: Depth and Cohen-Macaulay modules

First, we consider the notion of depth. Let R be a Noetherian local ring with maximal ideal m,
and let M be a finitely generated R module. An element a ∈ m is said to be regular on M if
multiplication by a defines an injective map M → M . A sequence a1, . . ., ar of elements of m is a
regular sequence on M if for each j, aj is regular on M/(a1, . . ., aj−1)M . The depth of M is the
length of a maximal regular sequence – in other words, a regular sequence a1, . . ., ar such that there
is no element in m which is regular on M/(a1, . . ., ar)M . It is well known that all maximal regular
sequences have the same length.

Exercise 5.1. Prove, directly from the definition, that a module with depth d greater than 0 cannot
contain a submodule with depth less than d. This fact is used in the proof of Theorem 2.1.

Proposition 5.2. For any R-module M , depth M ≤ dim M 2

There are a number of different but equivalent definitions of dimension, but for our purposes the
simplest, in the case of Op modules which interest us, is that dim M is the dimension of the set
of zeroes of the annihilator ideal of M , {a ∈ Op : am = 0 for all m ∈ M}. This is equal to the
dimension of the support of the coherent sheaf M which extends M to a neighbourhood of 0 ∈ Cp.

An R-module is Cohen-Macaulay if its depth is equal to its dimension. Every finitely generated
module over the ring Op has a finite free resolution; this property in fact characterises all regular
local rings. That is, for every Op module M , there exists a finite exact sequence

0 // Or`p
A` // Or`−1

p
A`−1 // · · · // Or1p

A1 // Or0p //M // 0 .

A free resolution is minimal if every entry in each of the matrices Aj lies in the maximal ideal m, in
which case the length, `, of the resolution is the minimum possible, and is known as the projective
dimension of M as Op-module and denoted by pdOp

(M).

Proposition 5.3. (The Auslander-Buchsbaum Theorem) see e.g. [BH93, Theorem 1.3.3]Let R be
a Noetherian local ring and M a finitely generated R-module. Then

pdRM + depthRM = depthRR. 2
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A regular local ring such as Op has depth equal to its dimension, so for an Op-module the formula
reads

pdOp
(M) + depthOp

M = p.

In particular, an Op-module with depth p must be free.

We use the relation between depth and projective dimension in proving the quotient of ideals
theorem, 2.1, in proving that the discriminant of a stable map-germ (CN , S) → (CP , 0) is a free
divisor (Lemma 2.10), and in proving that JG/J rel

G is a free module over the base space of a stable
unfolding (Theorem 2.12).

Proposition 5.4. (e.g. [BH93, Theorems 2.1.2, 2.1.3]) Let M be a Cohen-Macaulay Op-module,
and a1, . . ., ar ∈ mp. Then

(1) a1, . . ., ar is a regular sequence on M if and only if dim M/(a1, . . ., ar)M = dim M − r , and

(2) in this case M/(a1, . . ., ar)M is Cohen Macaulay.

Theorem 5.5. ([BR64, Corollary 2.7])Let R be a Cohen-Macaulay local ring, and M an R-module
with presentation

Rm → Rn → M → 0,

with m ≥ n. Then codim supp M ≤ m− n+ 1 and if they are equal then M is a Cohen-Macaulay
module. 2

5.0.1 Finiteness: The Preparation Theorem and Nakayama’s Lemma

We have used the following result in .

Theorem 5.6. Suppose that M is a finitely generated On-module, and that f : (Cn, 0) → (Cp, 0)

is analytic. Then

(1) under the homomorphism f∗ : Op → On through which M becomes an Op-module, M is finitely
generated over Op if and only if dimC M/f∗(mp)M <∞,

and

(2) in this case

elements m1, . . .,mr ∈M generate M over Op if and only if their classes in M/f∗(mp)M generate
it as C-vector space.

Here (1) is the Preparation Theorem in the form given to it by John Mather. In its traditional
form it is due to Weierstrass. Bernard Malgrange proved a C∞ version of the same statement when
f : (Rn, 0) → (Rp, 0) is smooth. And (2) is a simple consequence of (1), by Nakayama’s lemma.
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Exercise 5.7. Use Nakayama’s lemma to prove (2) above.

2
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